【題目】高二某班50名學(xué)生在一次百米測試中,成績?nèi)慷冀橛?3秒到18秒之間,將測試結(jié)果按如下方式分成五組,第一組,第二組,…,第五組,如圖是按上述分組方法得到的頻率分布直方圖

(1)請根據(jù)頻率分布直方圖估計該組數(shù)據(jù)的眾數(shù)和中位數(shù)(精確到0.1);

(2)從成績介于兩組的人中任取2人,求兩人分布來自不同組的概率.

【答案】(1)15.5,15.7;(2)0.6

【解析】試題分析:1)根據(jù)頻率分布直方圖算出前兩組的頻率和、前三組的頻率和為、,因此中位數(shù)在第三組中,最后利用方程解出中位數(shù).(2)此問題為古典概率,用枚舉法得到基本事件的總數(shù)是,隨機事件中的基本事件的總數(shù)為,故所求的概率為

解析:(1)由圖可知眾數(shù)落在第三組

因為數(shù)據(jù)落在第一二組的頻率,

數(shù)據(jù)落在第一、、三組的頻率,所以中位數(shù)一定落在第三組假設(shè)中位數(shù)是,所以解得中位數(shù)

(2)由題意, 組有人, 組有人;

設(shè)組中人分別為; 組中人分別為,事件為抽取的兩人來自不同組則基本事件有

10種;

事件 包含基本事件有6種,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)定義在上且滿足下列兩個條件:

①對任意都有;

②當(dāng)時,有

(1)求,并證明函數(shù)上是奇函數(shù);

(2)驗證函數(shù)是否滿足這些條件;

(3)若,試求函數(shù)的零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形為正方形, 平面 , .試結(jié)合向量法:(1)證明:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩同學(xué)利用暑假到某縣進(jìn)行社會實踐,對該縣的養(yǎng)雞場連續(xù)六年來的規(guī)模進(jìn)行調(diào)查研究,得到如下兩個不同的信息圖:

(A)圖表明:從第1年平均每個養(yǎng)雞場出產(chǎn)1萬只雞上升到第6年平均每個養(yǎng)雞場出產(chǎn)2萬只雞:

(B)圖表明:由第1年養(yǎng)雞場個數(shù)30個減少到第6年的10.

請你根據(jù)提供的信息解答下列問題:

(1)第二年的養(yǎng)雞場的個數(shù)及全縣出產(chǎn)雞的總只數(shù)各是多少?

(2)哪一年的規(guī)模最大?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C1:y2=8ax(a>0),直線l傾斜角是45°且過拋物線C1的焦點,直線l被拋物線C1截得的線段長是16,雙曲線C2 =1的一個焦點在拋物線C1的準(zhǔn)線上,則直線l與y軸的交點P到雙曲線C2的一條漸近線的距離是(
A.2
B.
C.
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,需另投入成本C(x),當(dāng)年產(chǎn)量不足80千件時,C(x)= x2+10x(萬元);當(dāng)年產(chǎn)量不小于80千件時C(x)=51x+ ﹣1450(萬元),通過市場分析,若每件售價為500元時,該廠本年內(nèi)生產(chǎn)該商品能全部銷售完.
(1)寫出年利潤L(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲的利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)滿足:對任意x,y∈R,都有f(x+y)=f(x)f(y)﹣f(x)﹣f(y)+2成立,且x>0時,f(x)>2,
(1)求f(0)的值,并證明:當(dāng)x<0時,1<f(x)<2.
(2)判斷f(x)的單調(diào)性并加以證明.
(3)若函數(shù)g(x)=|f(x)﹣k|在(﹣∞,0)上遞減,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=x3+bx2+cx+d圖象如圖,則函數(shù) 的單調(diào)遞減區(qū)間為(

A.(﹣∞,﹣2)
B.[3,+∞)
C.[﹣2,3]
D.[

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在[0,+∞)上的函數(shù)f(x)滿足f(x)=2f(x+2),當(dāng)x∈[0,2)時,f(x)=﹣2x2+4x.設(shè)f(x)在[2n﹣2,2n)上的最大值為an(n∈N*),且{an}的前n項和為Sn , 則Sn=(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案