6.函數(shù)f(x)=2x+log2x,x∈[1,2],則f(x)的最大值與最小值之差是( 。
A.1B.2C.3D.4

分析 利用函數(shù)f(x)在x∈[1,2]上單調(diào)遞增,即可得出.

解答 解:∵函數(shù)f(x)=2x+log2x,x∈[1,2],
則f(x)在x∈[1,2]上單調(diào)遞增,
∴f(x)的最大值與最小值之差是f(2)-f(1)=22+log22-(21+log21)=3.
故選:C.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、函數(shù)求值,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.把復(fù)數(shù)z的共軛復(fù)數(shù)記作$\overline{z}$,已知(3-4i)$\overline{z}$=1+2i,(其中i為虛數(shù)單位),則復(fù)數(shù)z在坐標(biāo)平面內(nèi)對(duì)應(yīng)的點(diǎn)在( 。
A.第四象限B.第三象限C.第二象限D.第一象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知向量$\overrightarrow a$與向量$\overrightarrow b$的夾角為$\frac{2π}{3}$,且|${\overrightarrow a}$|=|${\overrightarrow b}$|=2,又向量$\overrightarrow c$=x$\overrightarrow a$+y$\overrightarrow b$(x∈R且x≠0,y∈R),則|$\frac{|x|}{|\overrightarrow{c}|}$的最大值為( 。
A.$\frac{{\sqrt{3}}}{3}$B.$\sqrt{3}$C.$\frac{1}{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=1-$\frac{a}{x}$-lnx(a∈R).
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)的圖象在點(diǎn)($\frac{1}{2}$,f($\frac{1}{2}$))處的切線方程;
(Ⅱ)當(dāng)a≥0時(shí),記函數(shù)Γ(x)=$\frac{1}{2}$ax2+(1-2a)x+$\frac{a}{x}$-1+f(x),試求Γ(x)的單調(diào)遞減區(qū)間;
(Ⅲ)設(shè)函數(shù)h(x)=3λa-2a2(其中λ為常數(shù)),若函數(shù)f(x)在區(qū)間(0,2)上不存在極值,當(dāng)λ∈(-∞,0]∪[${\frac{8}{3}$,+∞)時(shí),求h(a)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)集合A={x|x2-x<0},B={x|0<x<3},那么“m∈A”是“m∈B”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知命題p:指數(shù)函數(shù)y=ax(a>0且a≠1)單調(diào)遞增;命題q:?x∈R,x2-(3a-4)x+1=0.若命題“p∨q”為真命題,命題“p∧q”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)p:2x2-x-1≤0,q:x2-(2a-1)x+a(a-1)≤0,若非q是非p的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在等差數(shù)列{an}中,a1=50,S9=S17,求前n項(xiàng)的和Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若程序框圖如圖所示,則該程序運(yùn)行后輸出k的值是( 。
A.8B.7C.6D.5

查看答案和解析>>

同步練習(xí)冊(cè)答案