(本小題滿分14分)
橢圓
短軸的左右兩個端點分別為A,B,直線
與x軸、y軸分別交于兩點E,F(xiàn),交橢圓于兩點C,D。
(I)若
,求直線
的方程;
(II)設(shè)直線AD,CB的斜率分別為
,若
,求k的值。
(1)
(2)k="3"
(I)設(shè)
…………2分
由已知
又
…………4分
所以
…………5分
所以
, …………6分
符合題意,
所以,所求直線
l的方程為
…………7分
(II)
,
所以
…………8分
平方得
…………9分
代入上式,
計算得
…………12分
所以
…………13分
因為
所以k="3" …………14分
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,在直角坐標系
中,已知橢圓
:
的離心率
,左、右兩個焦點分別為
、
。過右焦點
且與
軸垂直的直線與橢圓
相交
、
兩點,且
.
(1)求橢圓
的方程;
(2)設(shè)橢圓
的左頂點為
,下頂點為
,動點
滿足
,試求點
的軌跡方程,使點
關(guān)于該軌跡的對稱點落在橢圓
上.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知中心在坐標原點,焦點在
軸上的橢圓經(jīng)過點M(1,
),斜率為
的直線經(jīng)過橢圓的下頂點D和右焦點F,A、B為橢圓上不同于M的兩點。
(1)求橢圓的標準方程;
(2)若直線AB過點F且不與坐標軸垂直,求線段AB的中垂線與
軸的交點的橫坐標的取值范圍。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,橢圓
經(jīng)過點
,離心率
。
(l)求橢圓
的方程;
(2)設(shè)直線
與橢圓
交于
兩點,點
關(guān)于
軸的對稱點為
與
不重合),則直線
與
軸是否交于一個定點?若是,請寫出定點坐標,并證明你的結(jié)論;若不是,請說明理由。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
中心在坐標原點,焦點在x軸上的橢圓,它的離心率為
,與直線x+y-1=0相交于兩點M、N,且以
為直徑的圓經(jīng)過坐標原點.求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知橢圓
的離心率為
,過右焦點
且斜率為
的直線與
相交于
兩點.若
,則
A.1 | B. | C. | D.2 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
如圖,已知橢圓
的左、右準線分別為
l1、
l2,且分別交
x軸于
C、
D兩點,從
l1上一點
A發(fā)出一條光線經(jīng)過橢圓的左焦點
F被
x軸反射后與
l2交于點
B,若
,且
,則橢圓的離心率等于_____________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
請閱讀以下材料,然后解決問題:
①設(shè)橢圓的長半軸長為
a,短半軸長為
b,則橢圓的面積為
ab②我們把由半橢圓C
1:
+
="1" (x≤0)與半橢圓C
2:
+
="1" (x≥0)合成的曲線稱作“果圓”,其中
=
+
,
a>0,b>c>0
如右上圖,設(shè)點
F0,
F1,
F2是相應(yīng)橢圓的焦點,
A1,
A2和
B1,
B2是“果圓”與
x,
y軸的交點,若△
F0 F1 F2是邊長為1的等邊三角形,則上述“果圓”的面積為
。
查看答案和解析>>