分析 先求出其導(dǎo)函數(shù),把x=1代入,求出切線的斜率,進(jìn)而得到切線方程,找到切線與y軸的交點的縱坐標(biāo)的表達(dá)式,即可求出結(jié)論.
解答 解:因為y=xn+1,
故y′=(n+1)xn,
所以x=1時,y′=n+1,
則直線方程為y-1=(n+1)(x-1),
令x=0,則y=1-(n+1)=-n,
故切線與y軸的交點為( 0,-n),
即有bn=2yn=-2n,
則b1•b2•…b2010=(-2)×(-4)×…×(-4020)
=22010•2010!.
故答案為:22010•2010!.
點評 當(dāng)題目中遇到求曲線C在點A(m,n)的切線方程時,其處理步驟為:①判斷A點是否在C上②求出C對應(yīng)函數(shù)的導(dǎo)函數(shù)③求出過A點的切線的斜率④代入點斜式方程,求出直線的方程.同時考查運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 正弦值是PM,正切線是A′T′ | B. | 正弦值是MP,正切線是A′T′ | ||
C. | 正弦值是MP,正切線是AT | D. | 正弦值是PM,正切線是AT |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x=1 | B. | x=-1 | C. | y=1 | D. | y=-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -1 | C. | 0 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{10}$,1)∪(1,10) | B. | ($\frac{1}{10}$,1)∪(2,10) | C. | ($\frac{1}{10}$,10) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 7m/s | B. | 6m/s | C. | 2m/s | D. | 1m/s |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com