【題目】已知是拋物線上一點, 到直線的距離為, 到的準線的距離為,且的最小值為.
(Ⅰ)求拋物線的方程;
(Ⅱ)直線交于點,直線交于點,線段的中點分別為,若,直線的斜率為,求證:直線恒過定點.
科目:高中數學 來源: 題型:
【題目】已知圓C經過點A(1,3)、B(2,2),并且直線m:3x﹣2y=0平分圓C.
(1)求圓C的方程;
(2)若過點D(0,1),且斜率為k的直線l與圓C有兩個不同的交點M、N.
(Ⅰ)求實數k的取值范圍;
(Ⅱ)若 =12,求k的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】把函數f(x)=sin(2x+φ)(|φ|< )的圖象上的所有點向左平移 個單位長度,得到函數y=g(x)的圖象,且g(﹣x)=g(x),則( )
A.y=g(x)在(0, )單調遞增,其圖象關于直線x= 對稱
B.y=g(x)在(0, )單調遞增,其圖象關于直線x= 對稱
C.y=g(x)在(0, )單調遞減,其圖象關于直線x= 對稱
D.y=g(x)在(0, )單調遞減,其圖象關于直線x= 對稱
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知在四棱錐P﹣ABCD中,底面ABCD是平行四邊形,PA⊥平面ABCD,PA= ,AB=1.AD=2.∠BAD=120°,E,F,G,H分別是BC,PB,PC,AD的中點.
(Ⅰ)求證:PH∥平面GED;
(Ⅱ)過點F作平面α,使ED∥平面α,當平面α⊥平面EDG時,設PA與平面α交于點Q,求PQ的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=|2x﹣1|,定義f1(x)=x,fn+1(x)=f(fn(x)),已知函數g(x)=fm(x)﹣x有8個零點,則m的值為( )
A.8
B.4
C.3
D.2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設,已知定義在R上的函數在區(qū)間內有一個零點, 為的導函數.
(Ⅰ)求的單調區(qū)間;
(Ⅱ)設,函數,求證: ;
(Ⅲ)求證:存在大于0的常數,使得對于任意的正整數,且 滿足.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】集合A={x|1≤x≤5},B={x|2≤x≤6},
(1)若x∈A,y∈B且均為整數,求x>y的概率.
(2)若x∈A,y∈B且均為實數,求x>y的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com