已知函數(shù)f(x)在R上為增函數(shù),且滿足f(4)<f(2x),則x的取值范圍是________.

(2,+∞)
分析:利用題中條件可得2x>4,解得 x>2,從而得到x的取值范圍.
解答:∵函數(shù)f(x)在R上為增函數(shù),且滿足f(4)<f(2x),
∴2x>4,解得 x>2,
故答案為 (2,+∞).
點(diǎn)評(píng):本題主要考查函數(shù)的單調(diào)性的應(yīng)用,指數(shù)不等式的解法,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

1、已知函數(shù)f(x)在R上滿足f(x)=2f(2-x)-x2+8x-8,則曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)在R上滿足y=f(x)=2f(2-x)+ex-1+x2,則曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程是( 。
A、2x-y-1=0B、x-y-3=0C、3x-y-2=0D、2x+y-3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)在R上滿足2f(x)+f(1-x)=3x2-2x+1,則曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程是
2x-y-1=0
2x-y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)在R上有定義,對(duì)任意實(shí)數(shù)a>0和任意實(shí)數(shù)x都有f(ax)=a﹒f(x).
(1)證明:f(0)=0
(2)若f(1)=1,求g(x)=
1f(x)
+f(x).(x>0)
的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)在R上可導(dǎo),函數(shù)F(x)=f(x2-4)+f(4-x2),則F′(2)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案