精英家教網 > 高中數學 > 題目詳情
1、已知函數f(x)在R上滿足f(x)=2f(2-x)-x2+8x-8,則曲線y=f(x)在點(1,f(1))處的切線方程是( 。
分析:由f(x)=2f(2-x)-x2+8x-8,可求f(1)=1,對函數求導可得,f′(x)=-2f′(2-x)-2x+8從而可求f′(1)=2即曲線y=f(x)在點(1,f(1))處的切線斜率k=f′(1)=2,進而可求切線方程.
解答:解:∵f(x)=2f(2-x)-x2+8x-8,∴f(1)=2f(1)-1∴f(1)=1
∵f′(x)=-2f′(2-x)-2x+8
∴f′(1)=-2f′(1)+6∴f′(1)=2
根據導數的幾何意義可得,曲線y=f(x)在點(1,f(1))處的切線斜率k=f′(1)=2
∴過(1,1)的切線方程為:y-1=2(x-1)即y=2x-1
故選A.
點評:本題主要考查學生會利用導數求曲線上過某點切線方程的斜率,解題的關鍵是要由已知先要求出函數的導數,進而可求k=f′(1),從而可求切線方程.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)在R上滿足y=f(x)=2f(2-x)+ex-1+x2,則曲線y=f(x)在點(1,f(1))處的切線方程是( 。
A、2x-y-1=0B、x-y-3=0C、3x-y-2=0D、2x+y-3=0

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)在R上滿足2f(x)+f(1-x)=3x2-2x+1,則曲線y=f(x)在點(1,f(1))處的切線方程是
2x-y-1=0
2x-y-1=0

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)在R上有定義,對任意實數a>0和任意實數x都有f(ax)=a﹒f(x).
(1)證明:f(0)=0
(2)若f(1)=1,求g(x)=
1f(x)
+f(x).(x>0)
的極值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)在R上可導,函數F(x)=f(x2-4)+f(4-x2),則F′(2)=
 

查看答案和解析>>

同步練習冊答案