如圖,在平面斜坐標(biāo)系xOy中,∠xOy=60°,平面上任一點P關(guān)于斜坐標(biāo)系的斜坐標(biāo)是這樣定義的:若=xe1+ye2(其中e1、e2分別為與x軸、y軸同方向的單位向量),則P點斜坐標(biāo)為(x,y).
(1)若P點斜坐標(biāo)為(2,-2),求P到O的距離|PO|;
(2)求以O(shè)為圓心,1為半徑的圓在斜坐標(biāo)系xOy中的方程.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知△ABC的三邊長|AB|=,|BC|=4,|AC|=1,動點M滿足=λ+μ,且λμ=.
(1)求||最小值,并指出此時與,的夾角;
(2)是否存在兩定點F1,F2使|||-|||恒為常數(shù)k?若存在,指出常數(shù)k的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知向量a=(-1,2),又點A(8,0),B(n,t),C(ksinθ,t)(0≤θ≤).
(1)若⊥a,且||=||(O為坐標(biāo)原點),求向量.
(2)若向量與向量a共線,當(dāng)k>4,且tsinθ取最大值4時,求·.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量a=(cosλθ,cos(10-λ)θ),b=(sin(10-λ)θ,sinλθ),λ、θ∈R.
(1)求|a|2+|b|2的值;
(2)若a⊥b,求θ;
(3)若θ=,求證:a∥b.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)i、j分別是平面直角坐標(biāo)系Ox,Oy正方向上的單位向量,且=-2i+mj,=ni+j,=5i-j,若點A、B、C在同一條直線上,且m=2n,求實數(shù)m、n的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com