已知△ABC的三邊長|AB|=,|BC|=4,|AC|=1,動點M滿足=λ+μ,且λμ=.
(1)求||最小值,并指出此時與,的夾角;
(2)是否存在兩定點F1,F2使|||-|||恒為常數(shù)k?若存在,指出常數(shù)k的值,若不存在,說明理由.
(1) 或 (2) 存在 k=2
解析解:(1)由余弦定理知:
cos∠ACB==⇒∠ACB=.
因為||2==(λ+μ)2
=λ2+16μ2+2λμ·
=λ2+16μ2+1≥3.
所以||≥,當(dāng)且僅當(dāng)λ=±1時,“=”成立.
故||的最小值是,
此時<,>=<,>=或.
(2)以C為坐標(biāo)原點,∠ACB的平分線所在直線為x軸建立直角坐標(biāo)系(如圖),則A,B(2,-2),
設(shè)動點M(x,y),
因為=λ+μ,
所以⇒
再由λμ=知-y2=1,
所以,動點M的軌跡是以F1(-2,0),F2(2,0)為焦點,實軸長為2的雙曲線,
即存在兩定點F1(-2,0),F2(2,0)使|||-|||恒為常數(shù)2,即k=2.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量,,.
(1)若點能構(gòu)成三角形,求實數(shù)應(yīng)滿足的條件;
(2)若為直角三角形,且為直角,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量=(3,-4),=(6,-3),=(5-m,-3-m).
(1)若點A,B,C不能構(gòu)成三角形,求實數(shù)m滿足的條件;
若△ABC為直角三角形,求實數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面斜坐標(biāo)系xOy中,∠xOy=60°,平面上任一點P關(guān)于斜坐標(biāo)系的斜坐標(biāo)是這樣定義的:若=xe1+ye2(其中e1、e2分別為與x軸、y軸同方向的單位向量),則P點斜坐標(biāo)為(x,y).
(1)若P點斜坐標(biāo)為(2,-2),求P到O的距離|PO|;
(2)求以O(shè)為圓心,1為半徑的圓在斜坐標(biāo)系xOy中的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知關(guān)于x的方程:x2-(6+i)x+9+ai=0(a∈R)有實數(shù)根b.
(1)求實數(shù)a,b的值.
(2)若復(fù)數(shù)滿足|-a-bi|-2|z|=0,求z為何值時,|z|有最小值,并求出|z|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知四點A(x,0),B(2x,1),C(2,x),D(6,2x).
(1)求實數(shù)x,使兩向量,共線.
(2)當(dāng)兩向量與共線時,A,B,C,D四點是否在同一條直線上?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
數(shù)列{an}的通項公式an=ncos,其前n項和為Sn,則S2012等于( )
A.1006 | B.2012 | C.503 | D.0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com