設(shè)f(x)是可導(dǎo)函數(shù),且=( )
A.-4
B.-1
C.0
D.
【答案】分析:由導(dǎo)數(shù)的概念知f′(x)=,由此結(jié)合題設(shè)條件能夠?qū)С鰂′(x)的值.
解答:解:∵=2,
∴f′(x)==-4
故選A.
點(diǎn)評(píng):本題考查導(dǎo)數(shù)的概念,解題時(shí)要注意極限的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是可導(dǎo)函數(shù),且
lim
△x→0
f(x0)-f(x0+△x)
2△x
=2,f′(x0)
=( 。
A、-4
B、-1
C、0
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是可導(dǎo)函數(shù),且
lim
△x→0
f(x0-△x)-f(x0+2△x)
△x
=3
,則f′(x0)=(  )
A、
1
2
B、-1
C、0
D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是可導(dǎo)函數(shù),若當(dāng)△x→0時(shí),
f(x0-2△x)-f(x0)△x
→2,則f′(x0)
=
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是可導(dǎo)函數(shù),且
lim
△x→0
f(x0-2△x)-f(x0)
△x
=2,則f′(x0)
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)f(x)是可導(dǎo)函數(shù),若當(dāng)△x→0時(shí),
f(x0-2△x)-f(x0)
△x
→2,則f′(x0)
=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案