【題目】選修4-4:極坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,曲線M的參數(shù)方程為 (α為參數(shù)),若以直角坐標(biāo)系中的原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線N的極坐標(biāo)方程為 (t為參數(shù)).
(1)求曲線M的普通方程和曲線N的直角坐標(biāo)方程;
(2)若曲線N與曲線M有公共點,求t的取值范圍.
【答案】(1)y=x2-1, ,x+y=t.(2)-≤t≤
【解析】試題分析:(1)根據(jù)三角同角關(guān)系消參數(shù)得曲線M的普通方程,注意參數(shù)取值范圍,根據(jù)將曲線N的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)直接聯(lián)立直線方程與拋物線方程,利用判別式以及數(shù)形結(jié)合確定t的取值范圍.
試題解析:(1)由x=cosα+sinα得x2=(cosα+sinα)2=cos2α+2sinαcosα+sin2α,
所以曲線M可化為y=x2-1,x∈[, ],
由ρsin=t得ρsinθ+ρcosθ=t,
所以ρsinθ+ρcosθ=t,所以曲線N可化為x+y=t.
(2)若曲線M,N有公共點,則當(dāng)直線N過點,時滿足要求,此時t=,并且向左下方平行移動直到相切之前總有公共點,相切時仍然只有一個公共點,
聯(lián)立,得x2+x-1-t=0,
由Δ=1+4(1+t)=0,解得t=-.
綜上可求得t的取值范圍是-≤t≤.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)上的動點到焦點距離的最小值為 -1.以原點為圓心、橢圓的短半軸長為半徑的圓與直線x﹣y+ =0相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若過點M(2,0)的直線與橢圓C相交于A,B兩點,P為橢圓上一點,且滿足 + =t (O為坐標(biāo)原點).當(dāng)|AB|= 時,求實數(shù)t的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|0< ≤1},B={y|y=( )x , 且x<﹣1}
(1)若集合C={x|x∈A∪B,且xA∩B},求集合C;
(2)設(shè)集合D={x|3﹣a<x<2a﹣1},滿足A∪D=A,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=f(x)在[0,2]上單調(diào)遞增,且函數(shù)f(x+2)是偶函數(shù),則下列結(jié)論成立的是( )
A.f(1)<f( )<f( )
B.f( )<f(1)<f( )??
C.f( )<f( )<f(1)
D.f( )<f(1)<f( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的中心在原點,左焦點為F1(﹣1,0),右準(zhǔn)線方程為:x=4.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若橢圓C上點N到定點M(m,0)(0<m<2)的距離的最小值為1,求m的值及點N的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若不等式lg ≥(x﹣1)lg3對任意x∈(﹣∞,1]恒成立,則a的取值范圍是( )
A.(﹣∞,0]
B.[1,+∞)
C.[0,+∞)
D.(﹣∞,1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 (a>b>0)的離心率為 ,以原點為圓心,橢圓的短半軸為半徑的圓與直線 相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P(4,0),M,N是橢圓C上關(guān)于x軸對稱的任意兩個不同的點,連接PN交橢圓C于另一點E,求直線PN的斜率的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,證明直線ME與x軸相交于定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某個實心零部件的形狀是如圖所示的幾何體,其下部是底面均是正方形,側(cè)面是全等的等腰梯形的四棱臺A1B1C1D1﹣ABCD,其上是一個底面與四棱臺的上底面重合,側(cè)面是全等的矩形的四棱柱ABCD﹣A2B2C2D2 .
(1)證明:直線B1D1⊥平面ACC2A2;
(2)現(xiàn)需要對該零部件表面進行防腐處理,已知AB=10,A1B1=20,AA2=30,AA1=13(單位:厘米),每平方厘米的加工處理費為0.20元,需加工處理費多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(cosα,sinα), =(cosβ,sinβ), =(﹣1,0).
(1)求向量 的長度的最大值;
(2)設(shè)α= ,且 ⊥( ),求cosβ的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com