2.已知函數(shù)$f(x)=\left\{\begin{array}{l}2-|x|,x≤2\\{(x-2)^2},x>2\end{array}\right.$,若方程f(x)=t恰有3個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)t的取值范圍是(0,2).

分析 由題意,畫出已知函數(shù)的圖象,結(jié)合圖象找出滿足與y=t有三個(gè)交點(diǎn)的t的范圍.

解答 解:已知函數(shù)的圖象如圖:方程f(x)=t恰有3個(gè)不同的實(shí)數(shù)根,
則圓錐函數(shù)圖象與y=t有三個(gè)交點(diǎn),由圖象可知,當(dāng)t∈(0,2)滿足題意;
故答案為:(0,2)

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)的零點(diǎn)個(gè)數(shù)的判定定理,分段函數(shù)的應(yīng)用,考查數(shù)形結(jié)合的思想方法;難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖1,在△ABC中,$|\overrightarrow{AB}|=2$,$|\overrightarrow{AC}|=1$,點(diǎn)D是BC的中點(diǎn).
( I)求證:$\overrightarrow{AD}=\frac{{\overrightarrow{AB}+\overrightarrow{AC}}}{2}$;
( II)直線l過點(diǎn)D且垂直于BC,E為l上任意一點(diǎn),求證:$\overrightarrow{AE}•(\overrightarrow{AB}-\overrightarrow{AC})$為常數(shù),并求該常數(shù);
( III)如圖2,若$cos=\frac{3}{4}$,F(xiàn)為線段AD上的任意一點(diǎn),求$\overrightarrow{AF}•(\overrightarrow{FB}+\overrightarrow{FC})$的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)$y=\sqrt{2x-4}+lg(5-x)$的定義域?yàn)锳,且B={x|x>4}.
(1)求集合A;
(2)求A∪(∁UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.圓心在直線$y=\frac{1}{3}x$上的圓C與y軸的正半軸相切,圓C截x軸所得的弦長為$4\sqrt{2}$,則圓C的標(biāo)準(zhǔn)方程為( 。
A.(x-3)2+(y-1)2=9B.(x+3)2+(y+1)2=9C.${({x-4})^2}+{({y-\frac{4}{3}})^2}=16$D.(x-6)2+(y-2)2=9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.一個(gè)由圓柱和正四棱錐組成的幾何體,其三視圖如圖所示,則該幾何體的體積為( 。
A.4π+4B.$4π+\frac{4}{3}$C.2π+4D.$2π+\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,內(nèi)角A,B,C對(duì)邊的邊長分別a,b,c,f(x)=2sinxcos(x+A)+sin(B+C)(x∈R),函數(shù)f(x)的圖象關(guān)于點(diǎn)$({\frac{π}{3},0})$對(duì)稱.
(I)求A;
(II)若b=6,△ABC的面積為$6\sqrt{3}$,求$\overrightarrow{AC}•\overrightarrow{CB}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.點(diǎn)M在圓C1:x2+y2+2x+8y-8=0上,點(diǎn)N在圓C2:x2+y2-4x-5=0上,則|MN|的最大值為13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知拋物線y2=2px(p>0)上的點(diǎn)A到焦點(diǎn)F距離為4,若在y軸上存點(diǎn)B(0,2)使得$\overrightarrow{BA}$$•\overrightarrow{BF}$=0,則該拋物線的方程為(  )
A.y2=8xB.y2=6xC.y2=4xD.y2=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)=x2-x-2(-5≤x≤5),在其定義域內(nèi)任取一點(diǎn)x0,使f(x0)<0的概率是( 。
A.$\frac{1}{10}$B.$\frac{2}{3}$C.$\frac{3}{10}$D.$\frac{4}{5}$

查看答案和解析>>

同步練習(xí)冊答案