若向量在y軸上的坐標(biāo)為0,其他坐標(biāo)不為0,那么與向量平行的坐標(biāo)平面是( )
A.xOy平面 B.xOz平面 C.yOz平面 D.以上都有可能
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:[同步]2015年人教B版選修1-2 1.2回歸分析練習(xí)卷(解析版) 題型:選擇題
已知回歸直線的斜率的估計(jì)值為1.23,樣本點(diǎn)的中心為(4,5),則回歸直線方程為( )
A. B. C. D.=0.08x+1.23
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2015年人教A版選修1-1 3.4生活中的優(yōu)化問題舉例練習(xí)卷(解析版) 題型:解答題
某種產(chǎn)品每件成本為6元,每件售價(jià)為x元(x>6),年銷量為u萬件,若已知與成正比,且售價(jià)為10元時(shí),年銷量為28萬件.
(1)求年銷售利潤y關(guān)于x的函數(shù)關(guān)系式.
(2)求售價(jià)為多少時(shí),年利潤最大,并求出最大年利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2015年人教A版必修二4.3 空間直角坐標(biāo)系練習(xí)卷(解析版) 題型:
如圖,長方體OABC﹣D'A'B'C'中,|OA|=3,|OC|=4,|OD'|=3,A'C'于B'D'相交于點(diǎn)P.分別寫出C,B',P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2015年人教A版必修二4.3 空間直角坐標(biāo)系練習(xí)卷(解析版) 題型:
點(diǎn)P(﹣3,2,﹣1)關(guān)于平面xOy的對稱點(diǎn)是 ,關(guān)于平面yOz的對稱點(diǎn)是 ,關(guān)于平面zOx的對稱點(diǎn)是 ,關(guān)于x軸的對稱點(diǎn)是 ,關(guān)于y軸的對稱點(diǎn)是 ,關(guān)于z軸的對稱點(diǎn)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2015年人教A版必修二4.3 空間直角坐標(biāo)系練習(xí)卷(解析版) 題型:
下列各點(diǎn)不在曲線x2+y2+z2=12上的是( )
A.(2,﹣2,2) B.
C.(﹣2,2,2) D.(1,3,4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2015人教B版選修4-5 3.2用數(shù)學(xué)歸納法證明不等式練習(xí)卷(解析版) 題型:填空題
數(shù)學(xué)歸納法證明“2n+1≥n2+n+2(n∈N*)”時(shí),第一步驗(yàn)證的表達(dá)式為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2015人教A版必修二2.1空間點(diǎn)、直線、平面間位置關(guān)系練習(xí)卷(解析版) 題型:
設(shè)a、b是兩條不同的直線,α、β是兩個(gè)不同的平面,則下列四個(gè)命題:
①若a⊥b,a⊥α,b?α,則b∥α;
②若a∥α,a⊥β,則α⊥β;
③若a⊥β,α⊥β,則a∥α或a?α;
④若a⊥b,a⊥α,b⊥β,則α⊥β
其中正確命題的個(gè)數(shù)為( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014新人教A版選修4-1 2.3圓的切線性質(zhì)及判定定理練習(xí)(解析版) 題型:選擇題
如圖,BC是半圓O的直徑,點(diǎn)D是半圓上一點(diǎn),過點(diǎn)D作⊙O切線AD,BA⊥DA于點(diǎn)A,BA交半圓于點(diǎn)E.已知BC=10,AD=4.那么直線CE與以點(diǎn)O為圓心,為半徑的圓的位置關(guān)系是 ( )
A.相離 B.相交 C.相切 D.不確定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com