已知非零向量
a
b
的夾角為60°,且|
a
|=|
a
-
b
|=2,則|
b
|=
 
考點:平面向量數(shù)量積的運算
專題:平面向量及應(yīng)用
分析:由已知向量模的等式兩邊平方得到兩個向量的模的關(guān)系即可.
解答: 解:由已知非零向量
a
,
b
的夾角為60°,且|
a
|=|
a
-
b
|=2,
所以|
a
|2=|
a
-
b
|2=4,整理得|
a
|=2,|
a
|2-2|
a
||
b
|cos60°+|
b
|2=4,所以|
b
|=2;
故答案為:2.
點評:本題考查了向量的數(shù)量積、模的平方與向量的平方相等的運用,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
sinx
的定義域為(k∈Z)( 。
A、[2kπ,π+2kπ]
B、(2kπ,π+2kπ)
C、[π+2kπ,2π+2kπ]
D、(π+2kπ,2π+2kπ)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知|
a
|=2,|
b
|=3,
a
,
b
的夾角為60°,則|2
a
-
b
|=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

雙曲線
x2
b2
-
y2
a2
=-1與拋物線y=
1
8
x2有一個公共焦點F,雙曲線上過點F且垂直實軸的弦長為
2
3
3
,則雙曲線的離心率等于( 。
A、2
B、
2
3
3
C、
3
2
2
D、
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)集合M={x|x=
k
2
+
1
2
,k∈Z},N={x|x=
k
4
+
1
2
,k∈Z},則( 。
A、M=NB、M?N
C、M?ND、M∩N=∅

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)非零向量
a
b
的夾角是
6
,且|
a
|=|
a
+
b
|,則
|2
a
+t
b
|
|
b
|
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

氣象意義上從春季進入夏季的標志為:“連續(xù)5天的日平均溫度均不低于22℃”.現(xiàn)有甲、乙、丙三地連續(xù)5天的日平均溫度的記錄數(shù)據(jù)(記錄數(shù)據(jù)都是正整數(shù)):
①甲地:5個數(shù)據(jù)的中位數(shù)為24,眾數(shù)為22;
②乙地:5個數(shù)據(jù)的中位數(shù)為27,總體均值為24;
③丙地:5個數(shù)據(jù)中有一個數(shù)據(jù)是32,總體均值為26,總體方差為10.8;
則肯定進入夏季的地區(qū)有( 。
A、①②③B、①③C、②③D、①

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=
3x,x∈[-1,1]
9
2
-
3x
2
,x∈(1,3)
則f(-log32)=
 
;若f(f(t))∈[0,1],則實數(shù)t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|a2x2-1|+ax(a∈R,且a≠0).
(Ⅰ)當a<0時,若函數(shù)y=f(x)-c恰有x1,x2,x3,x4四個零點,求x1+x2+x3+x4的值;
(Ⅱ)若不等式f(x)≥|x|對一切x∈[b,+∞)都成立,求a2b2+(b-
1
2
2的最小值.

查看答案和解析>>

同步練習冊答案