【題目】設數(shù)列(任意項都不為零)的前項和為,首項為,對于任意,滿足.
(1)數(shù)列的通項公式;
(2)是否存在使得成等比數(shù)列,且成等差數(shù)列?若存在,試求的值;若不存在,請說明理由;
(3)設數(shù)列,,若由的前項依次構(gòu)成的數(shù)列是單調(diào)遞增數(shù)列,求正整數(shù)的最大值.
【答案】(1);(2)存在,;(3)
【解析】
(1)代入求得,利用可驗證出奇數(shù)項和偶數(shù)項分別成等差數(shù)列,由此得到和,進而得到;
(2)假設存在滿足題意,利用等差中項和等比中項的定義可構(gòu)造方程組,得到,由可求得的范圍,結(jié)合得到,進而求出;
(3)將問題轉(zhuǎn)化為當為偶數(shù)時,,構(gòu)造函數(shù)和,可利用導數(shù)說明與的單調(diào)性,進而確定的取值,同時得到的范圍,從而求得結(jié)果.
(1)數(shù)列是非零數(shù)列,.
當時,,;
當且時,,,
是首項為,公差為的等差數(shù)列,是首項為,公差為的等差數(shù)列,
,,
.
(2)設存在,滿足題意,
成等比數(shù)列,;
成等差數(shù)列,,
消去可得:,,
,,,解得:,
,,,,.
(3)若是單調(diào)遞增數(shù)列,則為偶數(shù)時,恒成立,
兩邊取自然對數(shù)化簡可得:,顯然,
設,則,
當時,;當時,,
在上單調(diào)遞增,在上單調(diào)遞減,
在處取得極大值,
當時,是遞減數(shù)列,又,是的最大值,
;
設,則,
是遞減數(shù)列,當時,,當時,,
當時,存在,使得恒成立;
當時,不成立,
至多前項是遞增數(shù)列,即正整數(shù)的最大值是.
科目:高中數(shù)學 來源: 題型:
【題目】已知由n(n∈N*)個正整數(shù)構(gòu)成的集合A={a1,a2,…,an}(a1<a2<…<an,n≥3),記SA=a1+a2+…+an,對于任意不大于SA的正整數(shù)m,均存在集合A的一個子集,使得該子集的所有元素之和等于m.
(1)求a1,a2的值;
(2)求證:“a1,a2,…,an成等差數(shù)列”的充要條件是“”;
(3)若SA=2020,求n的最小值,并指出n取最小值時an的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】據(jù)國家統(tǒng)計局發(fā)布的數(shù)據(jù),2019年11月全國(居民消費價格指數(shù)),同比上漲,上漲的主要因素是豬肉價格的上漲,豬肉加上其他畜肉影響上漲3.27個百分點.下圖是2019年11月一籃子商品權重,根據(jù)該圖,下列四個結(jié)論正確的有______.
①一籃子商品中權重最大的是居住
②一籃子商品中吃穿住所占權重超過
③豬肉在一籃子商品中權重為
④豬肉與其他禽肉在一籃子商品中權重約為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設離心率為 的橢圓 的左、右焦點為 , 點P是E上一點, , 內(nèi)切圓的半徑為 .
(1)求E的方程;
(2)矩形ABCD的兩頂點C、D在直線上,A、B在橢圓E上,若矩形ABCD的周長為 , 求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標坐標系中,曲線的參數(shù)方程為(為參數(shù)),曲線: .以為極點, 軸的非負半軸為極軸,與直角坐標系取相同的長度單位,建立極坐標系.
(1)求曲線的極坐標方程;
(2)射線()與曲線的異于極點的交點為,與曲線的交點為,求.
【答案】(1) 的極坐標方程為, 的極坐標方程為;(2) .
【解析】試題分析:(1)先根據(jù)三角函數(shù)平方關系消參數(shù)得曲線,再根據(jù)將曲線的極坐標方程;(2)將代人曲線的極坐標方程,再根據(jù)求.
試題解析:(1)曲線的參數(shù)方程(為參數(shù))
可化為普通方程,
由,可得曲線的極坐標方程為,
曲線的極坐標方程為.
(2)射線()與曲線的交點的極徑為,
射線()與曲線的交點的極徑滿足,解得,
所以.
【題型】解答題
【結(jié)束】
23
【題目】設函數(shù).
(1)設的解集為,求集合;
(2)已知為(1)中集合中的最大整數(shù),且(其中,,為正實數(shù)),求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】CPI是居民消費價格指數(shù)(consumer price index)的簡稱.居民消費價格指數(shù)是一個反映居民家庭一般所購買的消費品價格水平變動情況的宏觀經(jīng)濟指標.如圖是根據(jù)國家統(tǒng)計局發(fā)布的2017年6月—2018年6月我國CPI漲跌幅數(shù)據(jù)繪制的折線圖(注:2018年6月與2017年6月相比較,叫同比;2018年6月與2018年5月相比較,叫環(huán)比),根據(jù)該折線圖,則下列結(jié)論錯誤的是( )
A.2017年8月與同年12月相比較,8月環(huán)比更大
B.2018年1月至6月各月與2017年同期相比較,CPI只漲不跌
C.2018年1月至2018年6月CPI有漲有跌
D.2018年3月以來,CPI在緩慢增長
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】畢達哥拉斯樹是由畢達哥拉斯根據(jù)“勾股定理”所畫出來的一個可以無限重復的圖形,也叫“勾股樹”,其是由一個等腰直角三角形分別以它的每一條邊向外作正方形而得到.圖1所示是第1代“勾股樹”,重復圖1的作法,得到第2代“勾股樹”(如圖2),如此繼續(xù).若“勾股樹”上共得到8191個正方形,設初始正方形的邊長為1,則最小正方形的邊長為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學2018年的高考考生人數(shù)是2015年高考考生人數(shù)的倍,為了更好地對比該校考生的升學情況,統(tǒng)計了該校2015年和2018年的高考情況,得到如圖柱狀圖:
則下列結(jié)論正確的是
A. 與2015年相比,2018年一本達線人數(shù)減少
B. 與2015年相比,2018年二本達線人數(shù)增加了倍
C. 2015年與2018年藝體達線人數(shù)相同
D. 與2015年相比,2018年不上線的人數(shù)有所增加
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為豐富學生課外生活,某市組織了高中生鋼筆書法比賽,比賽分兩個階段進行:第一階段由評委給出所有參賽作品評分,并確定優(yōu)勝者;第二階段為附加賽,參賽人員由組委會按規(guī)則另行確定.數(shù)據(jù)統(tǒng)計員對第一階段的分數(shù)進行了統(tǒng)計分析,這些分數(shù)都在內(nèi),在以組距為5畫分數(shù)的頻率分布直方圖(設“”)時,發(fā)現(xiàn)滿足.
(1)試確定的所有取值,并求;
(2)組委會確定:在第一階段比賽中低于85分的參賽者無緣獲獎也不能參加附加賽;分數(shù)在的參賽者評為一等獎;分數(shù)在的同學評為二等獎,但通過附加賽有的概率提升為一等獎;分數(shù)在的同學評為三等獎,但通過附加賽有的概率提升為二等獎(所有參加附加賽的獲獎人員均不降低獲獎等級).已知學生和均參加了本次比賽,且學生在第一階段評為二等獎.
()求學生最終獲獎等級不低于學生的最終獲獎等級的概率;
()已知學生和都獲獎,記兩位同學最終獲得一等獎的人數(shù)為,求的分布列和數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com