【題目】設(shè)數(shù)列(任意項(xiàng)都不為零)的前項(xiàng)和為,首項(xiàng)為,對(duì)于任意,滿(mǎn)足.
(1)數(shù)列的通項(xiàng)公式;
(2)是否存在使得成等比數(shù)列,且成等差數(shù)列?若存在,試求的值;若不存在,請(qǐng)說(shuō)明理由;
(3)設(shè)數(shù)列,,若由的前項(xiàng)依次構(gòu)成的數(shù)列是單調(diào)遞增數(shù)列,求正整數(shù)的最大值.
【答案】(1);(2)存在,;(3)
【解析】
(1)代入求得,利用可驗(yàn)證出奇數(shù)項(xiàng)和偶數(shù)項(xiàng)分別成等差數(shù)列,由此得到和,進(jìn)而得到;
(2)假設(shè)存在滿(mǎn)足題意,利用等差中項(xiàng)和等比中項(xiàng)的定義可構(gòu)造方程組,得到,由可求得的范圍,結(jié)合得到,進(jìn)而求出;
(3)將問(wèn)題轉(zhuǎn)化為當(dāng)為偶數(shù)時(shí),,構(gòu)造函數(shù)和,可利用導(dǎo)數(shù)說(shuō)明與的單調(diào)性,進(jìn)而確定的取值,同時(shí)得到的范圍,從而求得結(jié)果.
(1)數(shù)列是非零數(shù)列,.
當(dāng)時(shí),,;
當(dāng)且時(shí),,,
是首項(xiàng)為,公差為的等差數(shù)列,是首項(xiàng)為,公差為的等差數(shù)列,
,,
.
(2)設(shè)存在,滿(mǎn)足題意,
成等比數(shù)列,;
成等差數(shù)列,,
消去可得:,,
,,,解得:,
,,,,.
(3)若是單調(diào)遞增數(shù)列,則為偶數(shù)時(shí),恒成立,
兩邊取自然對(duì)數(shù)化簡(jiǎn)可得:,顯然,
設(shè),則,
當(dāng)時(shí),;當(dāng)時(shí),,
在上單調(diào)遞增,在上單調(diào)遞減,
在處取得極大值,
當(dāng)時(shí),是遞減數(shù)列,又,是的最大值,
;
設(shè),則,
是遞減數(shù)列,當(dāng)時(shí),,當(dāng)時(shí),,
當(dāng)時(shí),存在,使得恒成立;
當(dāng)時(shí),不成立,
至多前項(xiàng)是遞增數(shù)列,即正整數(shù)的最大值是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知由n(n∈N*)個(gè)正整數(shù)構(gòu)成的集合A={a1,a2,…,an}(a1<a2<…<an,n≥3),記SA=a1+a2+…+an,對(duì)于任意不大于SA的正整數(shù)m,均存在集合A的一個(gè)子集,使得該子集的所有元素之和等于m.
(1)求a1,a2的值;
(2)求證:“a1,a2,…,an成等差數(shù)列”的充要條件是“”;
(3)若SA=2020,求n的最小值,并指出n取最小值時(shí)an的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)國(guó)家統(tǒng)計(jì)局發(fā)布的數(shù)據(jù),2019年11月全國(guó)(居民消費(fèi)價(jià)格指數(shù)),同比上漲,上漲的主要因素是豬肉價(jià)格的上漲,豬肉加上其他畜肉影響上漲3.27個(gè)百分點(diǎn).下圖是2019年11月一籃子商品權(quán)重,根據(jù)該圖,下列四個(gè)結(jié)論正確的有______.
①一籃子商品中權(quán)重最大的是居住
②一籃子商品中吃穿住所占權(quán)重超過(guò)
③豬肉在一籃子商品中權(quán)重為
④豬肉與其他禽肉在一籃子商品中權(quán)重約為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)離心率為 的橢圓 的左、右焦點(diǎn)為 , 點(diǎn)P是E上一點(diǎn), , 內(nèi)切圓的半徑為 .
(1)求E的方程;
(2)矩形ABCD的兩頂點(diǎn)C、D在直線(xiàn)上,A、B在橢圓E上,若矩形ABCD的周長(zhǎng)為 , 求直線(xiàn)AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù)),曲線(xiàn): .以為極點(diǎn), 軸的非負(fù)半軸為極軸,與直角坐標(biāo)系取相同的長(zhǎng)度單位,建立極坐標(biāo)系.
(1)求曲線(xiàn)的極坐標(biāo)方程;
(2)射線(xiàn)()與曲線(xiàn)的異于極點(diǎn)的交點(diǎn)為,與曲線(xiàn)的交點(diǎn)為,求.
【答案】(1) 的極坐標(biāo)方程為, 的極坐標(biāo)方程為;(2) .
【解析】試題分析:(1)先根據(jù)三角函數(shù)平方關(guān)系消參數(shù)得曲線(xiàn),再根據(jù)將曲線(xiàn)的極坐標(biāo)方程;(2)將代人曲線(xiàn)的極坐標(biāo)方程,再根據(jù)求.
試題解析:(1)曲線(xiàn)的參數(shù)方程(為參數(shù))
可化為普通方程,
由,可得曲線(xiàn)的極坐標(biāo)方程為,
曲線(xiàn)的極坐標(biāo)方程為.
(2)射線(xiàn)()與曲線(xiàn)的交點(diǎn)的極徑為,
射線(xiàn)()與曲線(xiàn)的交點(diǎn)的極徑滿(mǎn)足,解得,
所以.
【題型】解答題
【結(jié)束】
23
【題目】設(shè)函數(shù).
(1)設(shè)的解集為,求集合;
(2)已知為(1)中集合中的最大整數(shù),且(其中,,為正實(shí)數(shù)),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】CPI是居民消費(fèi)價(jià)格指數(shù)(consumer price index)的簡(jiǎn)稱(chēng).居民消費(fèi)價(jià)格指數(shù)是一個(gè)反映居民家庭一般所購(gòu)買(mǎi)的消費(fèi)品價(jià)格水平變動(dòng)情況的宏觀經(jīng)濟(jì)指標(biāo).如圖是根據(jù)國(guó)家統(tǒng)計(jì)局發(fā)布的2017年6月—2018年6月我國(guó)CPI漲跌幅數(shù)據(jù)繪制的折線(xiàn)圖(注:2018年6月與2017年6月相比較,叫同比;2018年6月與2018年5月相比較,叫環(huán)比),根據(jù)該折線(xiàn)圖,則下列結(jié)論錯(cuò)誤的是( )
A.2017年8月與同年12月相比較,8月環(huán)比更大
B.2018年1月至6月各月與2017年同期相比較,CPI只漲不跌
C.2018年1月至2018年6月CPI有漲有跌
D.2018年3月以來(lái),CPI在緩慢增長(zhǎng)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】畢達(dá)哥拉斯樹(shù)是由畢達(dá)哥拉斯根據(jù)“勾股定理”所畫(huà)出來(lái)的一個(gè)可以無(wú)限重復(fù)的圖形,也叫“勾股樹(shù)”,其是由一個(gè)等腰直角三角形分別以它的每一條邊向外作正方形而得到.圖1所示是第1代“勾股樹(shù)”,重復(fù)圖1的作法,得到第2代“勾股樹(shù)”(如圖2),如此繼續(xù).若“勾股樹(shù)”上共得到8191個(gè)正方形,設(shè)初始正方形的邊長(zhǎng)為1,則最小正方形的邊長(zhǎng)為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)2018年的高考考生人數(shù)是2015年高考考生人數(shù)的倍,為了更好地對(duì)比該?忌纳龑W(xué)情況,統(tǒng)計(jì)了該校2015年和2018年的高考情況,得到如圖柱狀圖:
則下列結(jié)論正確的是
A. 與2015年相比,2018年一本達(dá)線(xiàn)人數(shù)減少
B. 與2015年相比,2018年二本達(dá)線(xiàn)人數(shù)增加了倍
C. 2015年與2018年藝體達(dá)線(xiàn)人數(shù)相同
D. 與2015年相比,2018年不上線(xiàn)的人數(shù)有所增加
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為豐富學(xué)生課外生活,某市組織了高中生鋼筆書(shū)法比賽,比賽分兩個(gè)階段進(jìn)行:第一階段由評(píng)委給出所有參賽作品評(píng)分,并確定優(yōu)勝者;第二階段為附加賽,參賽人員由組委會(huì)按規(guī)則另行確定.數(shù)據(jù)統(tǒng)計(jì)員對(duì)第一階段的分?jǐn)?shù)進(jìn)行了統(tǒng)計(jì)分析,這些分?jǐn)?shù)都在內(nèi),在以組距為5畫(huà)分?jǐn)?shù)的頻率分布直方圖(設(shè)“”)時(shí),發(fā)現(xiàn)滿(mǎn)足.
(1)試確定的所有取值,并求;
(2)組委會(huì)確定:在第一階段比賽中低于85分的參賽者無(wú)緣獲獎(jiǎng)也不能參加附加賽;分?jǐn)?shù)在的參賽者評(píng)為一等獎(jiǎng);分?jǐn)?shù)在的同學(xué)評(píng)為二等獎(jiǎng),但通過(guò)附加賽有的概率提升為一等獎(jiǎng);分?jǐn)?shù)在的同學(xué)評(píng)為三等獎(jiǎng),但通過(guò)附加賽有的概率提升為二等獎(jiǎng)(所有參加附加賽的獲獎(jiǎng)人員均不降低獲獎(jiǎng)等級(jí)).已知學(xué)生和均參加了本次比賽,且學(xué)生在第一階段評(píng)為二等獎(jiǎng).
()求學(xué)生最終獲獎(jiǎng)等級(jí)不低于學(xué)生的最終獲獎(jiǎng)等級(jí)的概率;
()已知學(xué)生和都獲獎(jiǎng),記兩位同學(xué)最終獲得一等獎(jiǎng)的人數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com