【題目】已知某幾何體的直觀圖和三視圖如下圖所示,其正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形.
(1)為中點(diǎn),在線段上是否存在一點(diǎn),使得平面?若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由;
(2)求二面角的余弦值.
【答案】(1)存在;(2).
【解析】試題分析:如圖建立空間直角坐標(biāo)系,求出相應(yīng)點(diǎn)的坐標(biāo),(1)求出平面的法向量,設(shè),根據(jù),求出即可;(2)求出平面的一個(gè)法向量,求出法向量夾角的余弦值即可.
試題解析:如圖,
建立空間直角坐標(biāo)系,則由該幾何體的三視圖可知:
.
(1)設(shè)平面的法向量,
∵,
∴,
∴令,可解得平面的一個(gè)法向量,
設(shè),由于,則,
又∵平面,
∴,即,
∴在線段上存在一點(diǎn),使得平面,此時(shí);
(2)設(shè)平面的法向量,
∵,
∴
∴令,可解得平面的一個(gè)法向量,
∴.
由圖可知,所求二面角為銳角,即二面角余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,半圓的直徑,為圓心,,為半圓上的點(diǎn).
(Ⅰ)請(qǐng)你為點(diǎn)確定位置,使的周長(zhǎng)最大,并說(shuō)明理由;
(Ⅱ)已知,設(shè),當(dāng)為何值時(shí),
(。┧倪呅的周長(zhǎng)最大,最大值是多少?
(ⅱ)四邊形的面積最大,最大值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知復(fù)數(shù)滿足,的虛部為2,
(1)求復(fù)數(shù);
(2)設(shè)在復(fù)平面上對(duì)應(yīng)點(diǎn)分別為,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)與的圖象關(guān)于軸對(duì)稱(chēng),當(dāng)函數(shù)和在區(qū)間同時(shí)遞增或同時(shí)遞減時(shí),把區(qū)間叫做函數(shù)的“不動(dòng)區(qū)間”.若區(qū)間為函數(shù)的“不動(dòng)區(qū)間”,則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義函數(shù)(其中為自變量,為常數(shù)).
(Ⅰ)若當(dāng)時(shí),函數(shù)的最小值為-1,求實(shí)數(shù)的值;
(Ⅱ)設(shè)全集,已知集合,,若集合,滿足,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線過(guò)橢圓的右焦點(diǎn),拋物線的焦點(diǎn)為橢圓的上頂點(diǎn),且交橢圓于兩點(diǎn),點(diǎn)在直線上的射影依次為.
(1)求橢圓的方程;
(2)若直線交軸于點(diǎn),且,當(dāng)變化時(shí),證明: 為定值;
(3)當(dāng)變化時(shí),直線與是否相交于定點(diǎn)?若是,請(qǐng)求出定點(diǎn)的坐標(biāo),并給予證明;否則,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面四邊形ABCD中,已知A=,B=,AB=6.在AB邊上取點(diǎn)E,使得BE=1,連接EC,ED.若∠CED=,EC=.
(1)求sin∠BCE的值;
(2)求CD的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) ,x R其中a>0.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在區(qū)間(-3,0)內(nèi)恰有兩個(gè)零點(diǎn),求a的取值范圍;
(Ⅲ)當(dāng)a=1時(shí),設(shè)函數(shù)f(x)在區(qū)間[t,t+3]上的最大值為M(t),最小值為m(t),記 ,求函數(shù)g(t)在區(qū)間[-4,-1]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,且過(guò)點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)橢圓的左焦點(diǎn)的直線與橢圓交于兩點(diǎn),直線過(guò)坐標(biāo)原點(diǎn)且與直線的斜率互為相反數(shù).若直線與橢圓交于兩點(diǎn)且均不與點(diǎn)重合,設(shè)直線與軸所成的銳角為,直線與軸所成的銳角為,判斷與的大小關(guān)系并加以證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com