分析:(1)由
Sn=nan+2-,可遞推
Sn-1=(n-1)an-1+2-,兩式作差得a
n-a
n-1=1進而得到通項公式.
(2)用數(shù)學歸納法證明,先由證當n=2時,不等式成立.再假設當n=k(k≥2,k∈N
+)時,不等式成立,遞推到當n=k+1時成立即可.
解答:解:(1)當n≥3時,
Sn=nan+2-,
Sn-1=(n-1)an-1+2-,
可得:
an=nan-(n-1)an-1-×2∴a
n-a
n-1=1(n≥3,n∈N
+).
∵a
1+a
2=2a
2+2-1,∴a
2=3
可得,
an=(2)①當n=2時,b
2=b
12-2=14>3=a
2,不等式成立.
②假設當n=k(k≥2,k∈N
+)時,不等式成立,即b
k>k+1
那么,當n=k+1時,b
k+1=b
k2-(k-1)b
k-2=b
k(b
k-k+1)-2>2b
k-2>2(k+1)-2=2k≥k+2
所以當n=k+1時,不等式也成立.
根據(jù)①,②可知,當n≥2,n∈N+時,b
n>a
n.
點評:本題主要考查由數(shù)列的通項和前n項和之間的關系來求數(shù)列的通項公式,要注意分類討論,還考查了用數(shù)學歸納法證明不等式,要注意兩點,一是遞推基礎不能忽視,二是遞推時要變形,符合假設的模型.