18.定義在(0,$\frac{π}{2}$)上的函數(shù)f(x),f′(x)是它的導(dǎo)函數(shù),且恒有f(x)<f′(x)tanx成立.則下列不等關(guān)系成立的是(  )
A.$\sqrt{3}$•f($\frac{π}{6}$)>2cos1•f(1)B.$\sqrt{3}$f($\frac{π}{6}$)<f($\frac{π}{3}$)C.$\sqrt{6}$f($\frac{π}{6}$)>2f($\frac{π}{4}$)D.$\sqrt{2}$f($\frac{π}{4}$)>f($\frac{π}{3}$)

分析 將條件f(x)<f'(x)tanx轉(zhuǎn)化為$\frac{f'(x)sinx-f(x)cosx}{si{n}^{2}x}$>0,即($\frac{f(x)}{sinx}$)'>0,構(gòu)造函數(shù)g(x)=$\frac{f(x)}{sinx}$,則g(x)在(0,$\frac{π}{2}$)上單調(diào)遞增.根據(jù)單調(diào)性可知,g($\frac{π}{6}$)<g($\frac{π}{3}$),也就是$\frac{f(\frac{π}{6})}{sin\frac{π}{6}}<\frac{f(\frac{π}{3})}{sin\frac{π}{3}}$,即$\sqrt{3}f(\frac{π}{6})<f(\frac{π}{3})$.

解答 解:∵f(x)<f'(x)tanx,
∴$f(x)<\frac{f'(x)sinx}{cosx}$,
∵$x∈(0,\frac{π}{2})$,∴cosx>0,
∴f'(x)sinx-f(x)cosx>0
記g(x)=$\frac{f(x)}{sinx}$,x$∈(0,\frac{π}{2})$,
則g'(x)=$(\frac{f(x)}{sinx})'=\frac{f'(x)sinx-f(x)cosx}{si{n}^{2}x}>0$,
∴$g(x)在(0,\frac{π}{2})$上單調(diào)遞增,
∴$g(\frac{π}{6})<g(\frac{π}{3})$,
∴$\frac{f(\frac{π}{6})}{sin\frac{π}{6}}<\frac{f(\frac{π}{3})}{sin\frac{π}{3}}$,即$\sqrt{3}f(\frac{π}{6})<f(\frac{π}{3})$.
故選:B.

點(diǎn)評 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,判斷函數(shù)值的大小,將條件進(jìn)行轉(zhuǎn)化構(gòu)造新函數(shù)是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=loga(x+b)(a,b為常數(shù))的圖象如圖所示,則函數(shù)g(x)=b${\;}^{{x^2}-4x}}$在[0,5]上的最大值是(  )
A.$\frac{1}{b^4}$B.$\frac{1}{b^5}$C.b4D.b5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若0<x<$\sqrt{3}$.則y=x$\sqrt{3-{x}^{2}}$的最大值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.(1)求函數(shù)y=2sin(2x+$\frac{π}{3}$)(-$\frac{π}{6}$<x<$\frac{π}{6}$)的值域;
(2)求函數(shù)y=2cos2x+5sin x-4的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知過點(diǎn)P(4,1)的直線l被圓(x-3)2+y2=4所截得的弦長為$2\sqrt{3}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.計(jì)算下列各式
(1)$\root{3}{{(1+\sqrt{2}{)^3}}}+\root{4}{{(1-\sqrt{2}{)^4}}}$;
(2)${(-\frac{7}{6})^0}+{8^{0.25}}×\root{4}{2}+{(\root{3}{2}×\sqrt{3})^6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為$\sqrt{3}$,實(shí)軸長為2
(Ⅰ)求雙曲線C的方程;
(Ⅱ)設(shè)直線l是圓O:x2+y2=2上動點(diǎn)P(x0,y0)(x0y0≠0)處的切線,l與雙曲線C交于不同的兩點(diǎn)A,B,證明∠AOB的大小為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.F是橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的右焦點(diǎn),A(1,1)為橢圓內(nèi)一定點(diǎn),P為橢圓上一動點(diǎn).則|PA|+|PF|的最小值為( 。
A.1B.2C.4-$\sqrt{5}$D.4+$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知正方體ABCD-A1B1C1D1,E是棱CD中點(diǎn),則直線A1E與直線BC1所成角的余弦值為( 。
A.$\frac{{2\sqrt{2}}}{3}$B.$\frac{1}{3}$C.$\frac{{\sqrt{3}}}{3}$D.0

查看答案和解析>>

同步練習(xí)冊答案