【題目】某游樂(lè)場(chǎng)推出了一項(xiàng)趣味活動(dòng),參加活動(dòng)者需轉(zhuǎn)動(dòng)如圖所示的轉(zhuǎn)盤兩次,每次轉(zhuǎn)動(dòng)后,待轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),記錄指針?biāo)竻^(qū)域中的數(shù).設(shè)兩次記錄的數(shù)分別為,獎(jiǎng)勵(lì)規(guī)則如下:①若,則獎(jiǎng)勵(lì)玩具一個(gè);②若,則獎(jiǎng)勵(lì)水杯一個(gè);③其余情況獎(jiǎng)勵(lì)飲料一瓶.假設(shè)轉(zhuǎn)盤質(zhì)地均勻,四個(gè)區(qū)域劃分均勻,小亮準(zhǔn)備參加此項(xiàng)活動(dòng).

(1)求小亮獲得玩具的概率;

(2)請(qǐng)比較小亮獲得水杯與獲得飲料的概率的大小,并說(shuō)明理由.

【答案】(1) ;(2)答案見(jiàn)解析.

【解析】試題分析:

(1)由幾何概型得到所有可能的事件,據(jù)此可得小亮獲得玩具的概率是;

(2)結(jié)合古典概型計(jì)算公式可得小亮獲得水杯與獲得飲料的概率的大小,則小亮獲得水杯的概率大于獲得飲料的概率.

試題解析:

用數(shù)對(duì)表示小亮參加活動(dòng)記錄的數(shù),則基本事件空間與點(diǎn)集一一對(duì)應(yīng),因?yàn)?/span>中元素個(gè)數(shù)是,所以基本事件總數(shù)為.

(1)記“”為事件,則事件包含的基本事件共有個(gè),即.所以,即小亮獲得玩具的概率為.

(2)即“”為事件,“”為事件,則事件包含的基本事件有個(gè),即,所以,則事件包含的基本事件有個(gè),即,所以,所以小亮獲得水杯的概率大于獲得飲料的概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.

(1)當(dāng)為何值時(shí), 最小? 此時(shí)的位置關(guān)系如何?

(2)當(dāng)為何值時(shí), 的夾角最小? 此時(shí)的位置關(guān)系如何?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線與直線)交于,兩點(diǎn).

1)當(dāng)時(shí),分別求在點(diǎn)處的切線方程;

2軸上是否存在點(diǎn),使得當(dāng)變動(dòng)時(shí),總有?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線與直線)交于,兩點(diǎn).

1)當(dāng)時(shí),分別求在點(diǎn)處的切線方程;

2軸上是否存在點(diǎn),使得當(dāng)變動(dòng)時(shí),總有?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線 的焦點(diǎn)為,過(guò)點(diǎn)的直線相交于、兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為

(Ⅰ)判斷點(diǎn)是否在直線上,并給出證明;

(Ⅱ)設(shè),求的內(nèi)切圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 )的兩個(gè)焦點(diǎn)為 ,離心率為,點(diǎn), 在橢圓上, 在線段上,且的周長(zhǎng)等于

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過(guò)圓 上任意一點(diǎn)作橢圓的兩條切線與圓交于點(diǎn), ,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,四棱錐中,四邊形是直角梯形, 底面, 的中點(diǎn), 點(diǎn)在上,且.

(1)證明: 平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校課題組為了研究學(xué)生的數(shù)學(xué)成績(jī)與學(xué)生細(xì)心程度的關(guān)系,在本校隨機(jī)調(diào)查了100名學(xué)生進(jìn)行研究.研究結(jié)果表明:在數(shù)學(xué)成績(jī)及格的60名學(xué)生中有45人比較細(xì)心,另外15人比較粗心;在數(shù)學(xué)成績(jī)不及格的40名學(xué)生中有10人比較細(xì)心,另外30人比較粗心.

(1)試根據(jù)上述數(shù)據(jù)完成列聯(lián)表;

數(shù)學(xué)成績(jī)及格

數(shù)學(xué)成績(jī)不及格

合計(jì)

比較細(xì)心

45

比較粗心

合計(jì)

60

100

(2)能否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為學(xué)生的數(shù)學(xué)成績(jī)與細(xì)心程度有關(guān)系?

參考數(shù)據(jù):獨(dú)立檢驗(yàn)隨機(jī)變量的臨界值參考表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù)有如下結(jié)論:

①該函數(shù)為偶函數(shù);

②若,則

③其單調(diào)遞增區(qū)間是;

④值域是;

⑤該函數(shù)的圖象與直線有且只有一個(gè)公共點(diǎn).(本題中是自然對(duì)數(shù)的底數(shù))

其中正確的是__________.(請(qǐng)把正確結(jié)論的序號(hào)填在橫線上)

查看答案和解析>>

同步練習(xí)冊(cè)答案