已知函數(shù)g(x)對(duì)一切實(shí)數(shù)x,y都有g(shù)(x+y)-g(y)-x(x+2y+1)成立,是g(x)=0,且f(x)=
g(x)-3x+3
x

(1)求g(0)的值;
(2)求f(x)的解析式;
(3)已知k∈R,設(shè)P:不等式f(2x)-k•2x≥0在x∈[-1,1]上有解,Q:f(|2x-1|)+k
2
|2x-1|
-3k=0有三個(gè)不同的實(shí)數(shù)解,如果滿(mǎn)足P成立的k的集合記為A,滿(mǎn)足Q成立的k的集合記為B,求A∩B.
考點(diǎn):抽象函數(shù)及其應(yīng)用,函數(shù)最值的應(yīng)用
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)對(duì)抽象函數(shù)滿(mǎn)足的函數(shù)值關(guān)系的理解和把握是解決該問(wèn)題的關(guān)鍵,對(duì)自變量適當(dāng)?shù)馁x值可以解決該問(wèn)題,結(jié)合已知條件可以賦x=-1,y=1求出f(0);
(2)在(1)基礎(chǔ)上賦值y=0可以實(shí)現(xiàn)求解f(x)的解析式的問(wèn)題;
(3)利用分離參數(shù)法,求出函數(shù)的最值,即可求出集合A,方程f(|2x-1|)+k
2
|2x-1|
-3k=0⇒|2x-1|2-(2+3k)|2x-1|+(1+2k)=0,(|2x-1|≠0),令|2x-1|=t,則t2-(2+3k)t+(1+2k)=0(t≠0),構(gòu)造函數(shù)h(t)=t2-(2+3k)t+(1+2k),通過(guò)數(shù)形結(jié)合與等價(jià)轉(zhuǎn)化的思想即可求得k的范圍,繼而的都集合B,再根據(jù)交集的運(yùn)算求出結(jié)果
解答: 解:(1)∵g(x+y)-g(y)=x(x+2y+1),g(1)=0,
令x=1,y=0,得g(1)-g(0)=1×(1+0+1)=2,
故g(0)=-2,
(2)令y=0,則g(x)-g(0)=x(x+1),
∴g(x)=x2+x-2,
∴f(x)=
g(x)-3x+3
x
=x+
1
x
-2
(3)∵f(2x)-k•2x≥0
∴k≤
f(2x)
2x
=(
1
2x
)2
-2(
1
2x
)+1,
設(shè)
1
2x
=t,t∈[
1
2
,2],
∴k≤(t-1)2
∵(t-1)2max=1,
∴k≤1,
∴A=(-∞,1],
∵f(|2x-1|)+k
2
|2x-1|
-3k=0可化為:
|2x-1|2-(2+3k)|2x-1|+(1+2k)=0,|2x-1|≠0,
令|2x-1|=t,則方程化為t2-(2+3k)t+(1+2k)=0(t≠0),
∵f(|2x-1|)+k
2
|2x-1|
-3k=0有三個(gè)不同的實(shí)數(shù)解,
∴由t=|2x-1|的圖象知,
t2-(2+3k)t+(1+2k)=0(t≠0),有兩個(gè)根t1、t2,
且0<t1<1<t2或0<t1<1,t2=1.
記h(t)=t2-(2+3k)t+(1+2k),
由題意可知,
h(0)=1+2k>0
h(1)=-k<0
h(0)=1+2k>0
h(1)=-k<0
0<
2+3k
2
<1

解得k>0,
∴B=(0,+∞)
∴A∩B=(0,1]
點(diǎn)評(píng):本題考查函數(shù)的單調(diào)性,考查函數(shù)的最值,考查分離參數(shù)法求解恒成立問(wèn)題,考查函數(shù)與方程思想,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=x2-2(1-a2)x-a在區(qū)間(1,3)內(nèi)有零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A、(0,
1
2
B、(-1,-
1
2
C、(-1,1)
D、(-
1
2
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,首項(xiàng)a1=1,數(shù)列{bn}滿(mǎn)足bn=(
1
2
 an,且b1b2b3=
1
64

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求a1b1+a2b2+…+anbn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax(a>0且a≠1),f(2)=9,則f(
1
2
)=( 。
A、
9
2
B、3
C、
1
9
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<
π
2
)的圖象如圖所示,則ω和φ的值分別為( 。
A、ω=1,φ=
π
6
B、ω=2,φ=
π
6
C、ω=1,φ=
π
3
D、ω=2,φ=
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:4log420-ln
e
+lg4-lg
1
25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

方程:cos2x+4sinx=a有解,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圖象不間斷函數(shù)f(x)是區(qū)間[a,b]上的單調(diào)函數(shù),且在區(qū)間(a,b)上存在零點(diǎn).上圖是用二分法求方程f(x)=0近似解的程序框圖,判斷框內(nèi)可以填寫(xiě)的內(nèi)容有如下四個(gè)選擇:
①f(a)f(m)<0,
②f(a)f(m)>0,
③f(b)f(m)<0,
④f(b)f(m)>0,
 其中能夠正確求出近似解的是( 。
A、①④B、②③C、①③D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
3
2
cosx-
3
2
sinx
(1)求f(x)的周期和單調(diào)增區(qū)間;
(2)已知f(
α
2
-
π
6
)=
3
5
,求f(α+
6
)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案