已知雙曲線
x2
4
-
y2
9
=1
,F(xiàn)1,F(xiàn)2是其兩個焦點,點M在雙曲線上,若∠F1MF2=120°,則△F1MF2的面積為
3
3
3
3
分析:利用雙曲線的定義和余弦定理及三角形的面積計算公式即可得出.
解答:解:不妨設(shè)點M在雙曲線的右支上,設(shè)|MF1|=m,|MF2|=n.
由雙曲線
x2
4
-
y2
9
=1
,得a2=4,b2=9,∴c=
a2+b2
=
13

m-n=2a=4
(2
13
)2=m2+n2-2mncos120°

解得mn=12.
∴△F1MF2的面積=
1
2
mnsin120°
=3
3

故答案為3
3
點評:熟練掌握雙曲線的定義和余弦定理及三角形的面積計算公式是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個結(jié)論:
①當(dāng)a為任意實數(shù)時,直線(a-1)x-y+2a+1=0恒過定點P,則過點P且焦點在y軸上的拋物線的標準方程是x2=
4
3
y
;
②已知雙曲線的右焦點為(5,0),一條漸近線方程為2x-y=0,則雙曲線的標準方程是
x2
5
-
y2
20
=1

③拋物線y=ax2(a≠0)的準線方程為y=-
1
4a
;
④已知雙曲線
x2
4
+
y2
m
=1
,其離心率e∈(1,2),則m的取值范圍是(-12,0).
其中所有正確結(jié)論的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
4
-
y2
a
=1
的實軸為A1A2,虛軸為B1B2,將坐標系的右半平面沿y軸折起,使雙曲線的右焦點F2折至點F,若點F在平面A1B1B2內(nèi)的射影恰好是該雙曲線的左頂點A1,且直線B1F與平面A1B1B2所成角的正切值為
5
5
,則a=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•佛山一模)已知雙曲線
x2
4
-y2=1
,則其漸近線方程為
y=±
1
2
x
y=±
1
2
x
,離心率為
5
2
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•焦作一模)已知雙曲線
x2
4
-
y2
12
=1
的離心率為e,焦點為F的拋物線y2=2px與直線y=k(x-
p
2
)交于A、B兩點,且
|AF|
|FB|
=e,則k的值為
+
.
2
2
+
.
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個結(jié)論:
①若α、β為銳角,tan(α+β)=-3,tanβ=
1
2
,則α+2β=
4
;
②在△ABC中,若
AB
BC
>0
,則△ABC一定是鈍角三角形;
③已知雙曲線
x2
4
+
y2
m
=1
,其離心率e∈(1,2),則m的取值范圍是(-12,0);
④當(dāng)a為任意實數(shù)時,直線(a-1)x-y+2a+1=0恒過定點P,則焦點在y軸上且過點P的拋物線的標準方程是x2=
4
3
y
.其中所有正確結(jié)論的個數(shù)是( 。

查看答案和解析>>

同步練習(xí)冊答案