【題目】已知函數(shù)y=f(x)的圖象與g(x)=logax(a>0,且a≠1)的圖象關(guān)于x軸對稱,且g(x)的圖象過(4,2)點(diǎn).
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若f(x﹣1)>f(5﹣x),求x的取值范圍.
【答案】解:(Ⅰ)∵g(x)=logax(a>0,且a≠1)的圖象過點(diǎn)(4,2),
∴l(xiāng)oga4=2,a=2,則g(x)=log2x.
∵函數(shù)y=f(x)的圖象與g(X)的圖象關(guān)于x軸對稱,
∴ .
(Ⅱ)∵f(x﹣1)>f(5﹣x),
∴ ,
即 ,解得1<x<3,
所以x的取值范圍為(1,3)
【解析】(Ⅰ)把點(diǎn)(4,2)代入g(x)的解析式求出a,再根據(jù)條件求出f(x)的解析式;(Ⅱ)根據(jù)(Ⅰ)和對數(shù)函數(shù)的單調(diào)性、真數(shù)大于零列出不等式組,求出解集即可.
【考點(diǎn)精析】通過靈活運(yùn)用對數(shù)函數(shù)的單調(diào)性與特殊點(diǎn),掌握過定點(diǎn)(1,0),即x=1時(shí),y=0;a>1時(shí)在(0,+∞)上是增函數(shù);0>a>1時(shí)在(0,+∞)上是減函數(shù)即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定方程: ,則下列命題中:
①該方程沒有小于0的實(shí)數(shù)解;
②該方程有無數(shù)個實(shí)數(shù)解;
③該方程在(-∞,0)內(nèi)有且只有一個實(shí)數(shù)解;
④若x0是該方程的實(shí)數(shù)解,則x0>-1.
正確的命題是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)=x2+2ax+3在(﹣∞,1]上是減函數(shù),當(dāng)x∈[a+1,1]時(shí),f(x)的最大值與最小值之差為g(a),則g(a)的最小值為( )
A.
B.1
C.
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x﹣1|+|x﹣a|,
(1)若a=﹣1,解不等式f(x)≥3;
(2)如果x∈R,f(x)≥2,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(Ⅰ)已知 是空間的兩個單位向量,它們的夾角為60°,設(shè)向量 , .求向量 與 的夾角; (Ⅱ)已知 是兩個不共線的向量, .求證: 共面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果函數(shù)f(x)=ax2+2x+a2﹣3在區(qū)間[2,4]上具有單調(diào)性,則實(shí)數(shù)a取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程是ρ= .
(1)寫出直線l的極坐標(biāo)方程與曲線C的普通方程;
(2)若點(diǎn) P是曲線C上的動點(diǎn),求 P到直線l的距離的最小值,并求出 P點(diǎn)的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com