(本小題滿分13分)
在某校組織的一次籃球定點(diǎn)投籃比賽中,兩人一對(duì)一比賽規(guī)則如下:若某人某次投籃命中,則由他繼續(xù)投籃,否則由對(duì)方接替投籃. 現(xiàn)由甲、乙兩人進(jìn)行一對(duì)一投籃比賽,甲和乙每次投籃命中的概率分別是.兩人共投籃3次,且第一次由甲開始投籃. 假設(shè)每人每次投籃命中與否均互不影響.
(Ⅰ)求3次投籃的人依次是甲、甲、乙的概率;
(Ⅱ)若投籃命中一次得1分,否則得0分. 用ξ表示甲的總得分,求ξ的分布列和數(shù)學(xué)期望.
(Ⅰ)(Ⅱ)的分布列為:

0
1
2
3
P




的數(shù)學(xué)期望.  
(Ⅰ)解:記 “3次投籃的人依次是甲、甲、乙” 為事件A.
由題意,得
答:3次投籃的人依次是甲、甲、乙的概率是.     …………………… 5分
(Ⅱ)解:由題意,ξ的可能取值為0,1,2,3,則
,
,
,

所以,的分布列為:

0
1
2
3
P




的數(shù)學(xué)期望.      …………… 13分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共13分)
某公司要將一批海鮮用汽車運(yùn)往A城,如果能按約定日期送到,則公司可獲得銷售收入30萬元,每提前一天送到,或多獲得1萬元,每遲到一天送到,將少獲得1萬元,為保證海鮮新鮮,汽車只能在約定日期的前兩天出發(fā),且行駛路線只能選擇公路1或公路2中的一條,運(yùn)費(fèi)由公司承擔(dān),其他信息如表所示.
   統(tǒng)計(jì)信息
汽車行駛
路線
不堵車的情況下到達(dá)所需時(shí)間(天)
堵車的情況下到達(dá)所需時(shí)間(天)
堵車的概率
運(yùn)費(fèi)(萬元)
公路1
2
3

1.6
公路2
1
4

0.8
  (I)記汽車走公路1時(shí)公司獲得的毛利潤(rùn)為(萬元),求的分布列和數(shù)學(xué)期望
(II)假設(shè)你是公司的決策者,你選擇哪條公路運(yùn)送海鮮有可能獲得的毛利潤(rùn)更多?
(注:毛利潤(rùn)=銷售收入-運(yùn)費(fèi))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
一個(gè)盒子中裝有5張卡片,每張卡片上寫有一個(gè)數(shù)字,數(shù)字分別是1、2、3、5,現(xiàn)從盒子中隨機(jī)抽取卡片。
(I)若從盒子中有放回地抽取3次卡片,每次抽取一張,求恰有兩次取到的卡片上數(shù)字為偶數(shù)的概率;
(II)若從盒子中依次抽取卡片,每次抽取一張,取出的卡片不放回,當(dāng)取到一張記有偶數(shù)的卡片即停止抽取,否則繼續(xù)抽取卡片,求抽取次數(shù)X的分布列和期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)某工廠三個(gè)車間共有工人1000名,各車間男、女工人數(shù)如下表:
 
第一車間
第二車間
第三車間
女工
173
100

男工
177


已知在全廠工人中隨機(jī)抽取1名,抽到第二車間男工的概率是0.15.
(1)求的值;
(2)現(xiàn)用分層抽樣的方法在全廠抽取50名工人,問應(yīng)在第三車間抽取多少名?
(3)已知,求第三車間中女工比男工少的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)隨機(jī)變量,且DX=2,則事件“X=1”   的概率為     (用數(shù)學(xué)作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

連續(xù)拋擲3枚硬幣,觀察落地后這3枚硬幣出現(xiàn)正面還是反面.
(1)求“恰有一枚正面向上”這一事件的概率;
(2)求“出現(xiàn)正面比反面多的”這一事件的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

國(guó)家教育部、體育總局和共青團(tuán)中央曾共同號(hào)召,在全國(guó)各級(jí)各類學(xué)校要廣泛、深入地開展全國(guó)億萬大中小學(xué)生陽光體育運(yùn)動(dòng).為此某網(wǎng)站于2010年1月18日至24日,在全國(guó)范圍內(nèi)進(jìn)行了持續(xù)一周的在線調(diào)查,隨機(jī)抽取其中200名大中小學(xué)生的調(diào)查情況,就每天的睡眠時(shí)間分組整理如下表所示:
序號(hào)()
每天睡眠時(shí)間
(小時(shí))
組中值()
頻數(shù)
頻率
()
1
[4,5)
4.5
8
0.04
2
[5,6)
5.5
52
0.26
3
[6,7)
6.5
60
0.30
4
[7,8)
7.5
56
0.28
5
[8,9)
8.5
20
0.10
6
[9,10)
9.5
4
0.02
 
 
(Ⅰ)估計(jì)每天睡眠時(shí)間小于8小時(shí)的學(xué)生所占的百分比約是多少;
(Ⅱ)該網(wǎng)站利用上面的算法流程圖,對(duì)樣本數(shù)據(jù)作進(jìn)一步統(tǒng)計(jì)
分析,求輸出的S的值,并說明S的統(tǒng)計(jì)意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

兩艘輪船都要停靠同一泊位,它們可能在一晝夜的任意時(shí)刻到達(dá).設(shè)兩船停靠泊位的時(shí)間分別為1 h與2 h,則有一艘船?坎次粫r(shí)必須等待一段時(shí)間的概率為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)(注意:在試題卷上作答無效)
“上海世博會(huì)”將于2010年5月1日至10月31日在上海舉行。世博會(huì)“中國(guó)館·貴賓廳”作為接待中外貴賓的重要場(chǎng)所,陳列其中的藝術(shù)品是體現(xiàn)兼容并蓄、海納百川的重要文化載體,為此,上海世博會(huì)事物協(xié)調(diào)局將舉辦“中國(guó)2010年上海世博會(huì)‘中國(guó)館·貴賓廳’藝術(shù)品方案征集”活動(dòng)。某地美術(shù)館從館藏的中國(guó)畫、書法、油畫、陶藝作品中各選一件代表作參與應(yīng)征,假設(shè)代表作中中國(guó)畫、書法、油畫入選“中國(guó)館·貴賓廳”的概率均為,陶藝入選“中國(guó)館·貴賓廳”的概率為 
(Ⅰ)求該地美術(shù)館選送的四件代表作中恰有一件作品入選“中國(guó)館·貴賓廳”的概率。
(Ⅱ)求該地美術(shù)館選送的四件代表作中至多有兩件作品入選“中國(guó)館·貴賓廳”的概率

查看答案和解析>>

同步練習(xí)冊(cè)答案