【題目】設(shè)f0(x)=sinx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,則f2006(x)=(
A.sinx
B.﹣sinx
C.cosx
D.﹣cosx

【答案】B
【解析】解:∵f0(x)=sinx,∴f1(x)=f0′(x)=cosx, f2(x)=f1′(x)=﹣sinx, =﹣cosx,
…,
∴fn+4(x)=fn(x).n∈N,
∴f2006(x)=f501×4+2(x)=f2(x)=﹣sinx.
故選:B.
【考點(diǎn)精析】通過靈活運(yùn)用基本求導(dǎo)法則,掌握若兩個(gè)函數(shù)可導(dǎo),則它們和、差、積、商必可導(dǎo);若兩個(gè)函數(shù)均不可導(dǎo),則它們的和、差、積、商不一定不可導(dǎo)即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,單位圓O與y軸負(fù)半軸交于點(diǎn)O',過點(diǎn)O'作與x軸平行的直線AB,射線O'P從O'A出發(fā),繞著點(diǎn)O'逆時(shí)針方向旋轉(zhuǎn)至O'B,在旋轉(zhuǎn)的過程中,記∠AO'P=x(0<x<π),O'P所經(jīng)過的在單位圓O內(nèi)區(qū)域(陰影部分)的面積為S.

(1)如果 ,那么S=
(2)關(guān)于函數(shù)S=f(x)的以下兩個(gè)結(jié)論:
①對(duì)任意 ,都有 ;
②對(duì)任意x1 , x2∈(0,π),且x1≠x2 , 都有
其中正確的結(jié)論的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的角A,B,C所對(duì)的邊分別為a,b,c,且 . (Ⅰ)求角A的大小;
(Ⅱ)若a=1, ,求b+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左焦點(diǎn)為F1 , 右焦點(diǎn)為F2 . 若橢圓上存在一點(diǎn)P,滿足線段PF2相切于以橢圓的短軸為直徑的圓,切點(diǎn)為線段PF2的中點(diǎn),則該橢圓的離心率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:方程 =1表示焦點(diǎn)在y軸上的橢圓;命題q:雙曲線 =1的離心率e∈(1,2).若命題p、q有且只有一個(gè)為真,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=2x﹣4x
(1)若x∈[﹣2,2],求函數(shù)f(x)的值域;
(2)求證:函數(shù)f(x)在區(qū)間(﹣∞,﹣1]的單調(diào)遞增.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A,B,C在圓x2+y2=1上運(yùn)動(dòng),且AB⊥BC,若點(diǎn)P的坐標(biāo)為 ,則 的取值范圍為(
A.[8,10]
B.[9,11]
C.[8,11]
D.[9,12]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解不等式x2﹣(a+ )x+1<0(a≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某餐館一天中要購買A,B兩種蔬菜每斤的價(jià)格分別為2元和3元,根據(jù)需要,A種蔬菜至少要買6斤,B種蔬菜至少要買4斤,而且一天中購買這兩種蔬菜的總費(fèi)用不能超過60元.

(1)寫出一天中A種蔬菜購買的數(shù)量x和B種蔬菜購買的數(shù)量y之間的不等式組;
(2)在下面給定的坐標(biāo)系中畫出(1)中不等式組表示的平面區(qū)域(用陰影表示),并求出它的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案