5.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,S8≤6,S11≥27,則S19的最小值是(  )
A.95B.114C.133D.152

分析 設(shè)等差數(shù)列{an}的公差為d,由S8≤6,S11≥27,利用求和公式可得:-8a1-28d≥-6,11a1+55d≥27,相加可得:a10≥7.再利用求和公式即可得出S19的最小值.

解答 解:設(shè)等差數(shù)列{an}的公差為d,∵S8≤6,S11≥27,
∴$8{a}_{1}+\frac{8×7}{2}$d≤6,$11{a}_{1}+\frac{11×10}{2}d$≥27,
∴-8a1-28d≥-6,11a1+55d≥27,
相加可得:3a1+27d≥21,即a1+9d=a10≥7.
則S19=$\frac{19({a}_{1}+{a}_{19})}{2}$=19a10≥19×7=133.
故選:C.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式性質(zhì)及其求和公式、不等式的基本性質(zhì),考查了推理能力與計(jì)算能力,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)拋物線(xiàn)y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線(xiàn)為l,過(guò)拋物線(xiàn)上一點(diǎn)A作l的垂線(xiàn),垂足為B.設(shè)C($\frac{7}{2}$p,0),AF與BC相交于點(diǎn)E.若|CF|=2|AF|,且△ACE的面積為2$\sqrt{2}$,則p的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.設(shè)a,b∈R+,且a+b=2則ab2的最大值為$\frac{4\sqrt{6}}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.把函數(shù)f(x)=log3x圖象關(guān)于x軸對(duì)稱(chēng)后,再向左平移2個(gè)單位,得到新函數(shù)g(x)的解析式為( 。
A.g(x)=log3(-x+2)B.g(x)=-log3(x-2)C.g(x)=log3(-x-2)D.g(x)=-log3(x+2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)為R上的偶函數(shù).當(dāng)x≤0時(shí),f(x)=4-x-a•2-x(a>0)
(Ⅰ)求函數(shù)f(x)在(0,+∞)上的解析式;
(Ⅱ)求函數(shù)f(x)在(0,+∞)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知集合A與B都是集合U的子集,那么如圖中陰影部分表示的集合為( 。
A.A∩BB.A∪BC.U(A∪B)D.U(A∩B)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.在△ABC中,sinA:sinB:sinC=4:3:2,那么cosC的值為$\frac{7}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.給出下列四個(gè)命題:
①如果一條直線(xiàn)垂直于一個(gè)平面內(nèi)的無(wú)數(shù)條直線(xiàn),那么這條直線(xiàn)與這個(gè)平面垂直;
②過(guò)空間一定點(diǎn)有且只有一條直線(xiàn)與已知平面垂直;
③如果平面外一條直線(xiàn)a與平面α內(nèi)一條直線(xiàn)b平行,那么a∥α;
④一個(gè)二面角的兩個(gè)半平面分別垂直于另一個(gè)二面角的兩個(gè)半平面,則這兩個(gè)二面角相等;
其中真命題的為( 。
A.①③B.②④C.②③D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知拋物線(xiàn)y2=2px(p>0)的焦點(diǎn)為(1,0),A,B是拋物線(xiàn)上位于x軸兩側(cè)的兩動(dòng)點(diǎn),且$\overrightarrow{OA}$•$\overrightarrow{OB}$=-4(O為坐標(biāo)原點(diǎn)).
(1)求拋物線(xiàn)方程;
(2)證明:直線(xiàn)AB過(guò)定點(diǎn)T;
(3)過(guò)點(diǎn)T作AB的垂線(xiàn)交拋物線(xiàn)于M,N兩點(diǎn),求四邊形AMBN的面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案