定義:對(duì)于函數(shù),若存在非零常數(shù),使函數(shù)對(duì)于定義域內(nèi)的任意實(shí)數(shù),都有,則稱函數(shù)是廣義周期函數(shù),其中稱為函數(shù)的廣義周期,稱為周距.
(1)證明函數(shù)是以2為廣義周期的廣義周期函數(shù),并求出它的相應(yīng)周距的值;
(2)試求一個(gè)函數(shù),使為常數(shù),)為廣義周期函數(shù),并求出它的一個(gè)廣義周期和周距
(3)設(shè)函數(shù)是周期的周期函數(shù),當(dāng)函數(shù)上的值域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/00/1/aujvk.png" style="vertical-align:middle;" />時(shí),求上的最大值和最小值.

(1)2;(2),,;(3)

解析試題分析:本題是一個(gè)新定義概念問(wèn)題,解決問(wèn)題的關(guān)鍵是按照新定義把問(wèn)題轉(zhuǎn)化為我們熟悉的問(wèn)題,(1)就是找到使為常數(shù),考慮到,因此取,則有,符合題設(shè),即得;(2)在(1)中求解時(shí),可以想到一次函數(shù)就是廣義周期函數(shù),因此取,再考慮到正弦函數(shù)的周期性,取,代入新定義式子計(jì)算可得;(3)首先,函數(shù)應(yīng)該是廣義周期函數(shù),由新定義可求得一個(gè)廣義周期是,周距,由于,可見(jiàn)在區(qū)間上取得最小值,在上取得最大值,而當(dāng)時(shí),由上面結(jié)論可得,最小值為,當(dāng)時(shí),,從而最大值為
試題解析:(1),
,(非零常數(shù))
所以函數(shù)是廣義周期函數(shù),它的周距為2.  (4分)
(2)設(shè),則


(非零常數(shù)) 所以是廣義周期函數(shù),且.      ( 9分)
(3),
所以是廣義周期函數(shù),且 .             (10分)
設(shè)滿足,
得:
,
知道在區(qū)間上的最小值是上獲得的,而,所以上的最小值為.       ( 13分)
得:

知道在區(qū)間上的最大值是上獲得的,
,所以上的最大值為23.        (16分)
考點(diǎn):新定義,新定義概念的理解,新定義概念的應(yīng)用與函數(shù)的最值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)討論函數(shù)的奇偶性;
(2)若函數(shù)上為減函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)若不等式有解,求實(shí)數(shù)m的取值菹圍;
(3)證明:當(dāng)a=0時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù).
(1)求的值域;
(2)記△ABC的內(nèi)角A,B,C的對(duì)邊長(zhǎng)分別為a,b,c,若,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,不等式的解集為.
(1)求的值;
(2)若對(duì)一切實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)的定義域?yàn)镋,值域?yàn)镕.
(1)若E={1,2},判斷實(shí)數(shù)λ=lg22+lg2lg5+lg5﹣與集合F的關(guān)系;
(2)若E={1,2,a},F(xiàn)={0,},求實(shí)數(shù)a的值.
(3)若,F(xiàn)=[2﹣3m,2﹣3n],求m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

函數(shù)的定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/6c/e/ons7m2.png" style="vertical-align:middle;" />,若存在常數(shù),使得對(duì)一切實(shí)數(shù)均成立,則稱為“圓錐托底型”函數(shù).
(1)判斷函數(shù),是否為“圓錐托底型”函數(shù)?并說(shuō)明理由.
(2)若是“圓錐托底型” 函數(shù),求出的最大值.
(3)問(wèn)實(shí)數(shù)滿足什么條件,是“圓錐托底型” 函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),.
(1)a≥-2時(shí),求F(x)=f(x)-g(x)的單調(diào)區(qū)間;
(2)設(shè)h(x)=f(x)+g(x),且h(x)有兩個(gè)極值點(diǎn)為,其中,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

求二次函數(shù)f(x)=x2-4x-1在區(qū)間[t,t+2]上的最小值g(t),其中t∈R.

查看答案和解析>>

同步練習(xí)冊(cè)答案