解:(1)∵關于x的不等式f(x)<(2m-1)x+1-m
2的解集為(m,m+1),
即不等式x
2+(a+1-2m)x+m
2+m<0的解集為(m,m+1),
∴x
2+(a+1-2m)x+m
2+m=(x-m)(x-m-1).
∴x
2+(a+1-2m)x+m
2+m=x
2-(2m+1)x+m(m+1).
∴a+1-2m=-(2m+1).
∴a=-2.…(2分)
(2)解法1:由(1)得
=
.
∴φ(x)=g(x)-kln(x-1)=
-kln(x-1)的定義域為(1,+∞).
∴φ'(x)=1-
=
.…(3分)
方程x
2-(2+k)x+k-m+1=0(*)的判別式△=(2+k)
2-4(k-m+1)=k
2+4m.…(4分)
①當m>0時,△>0,方程(*)的兩個實根為
,
,…(5分)
則x∈(1,x
2)時,φ'(x)<0;x∈(x
2,+∞)時,φ'(x)>0.
∴函數(shù)φ(x)在(1,x
2)上單調遞減,在(x
2,+∞)上單調遞增.
∴函數(shù)φ(x)有極小值點x
2.…(6分)
②當m<0時,由△>0,得
或
,
若
,則
,
,
故x∈(1,+∞)時,φ'(x)>0,(蘇元高考吧:www.gaokao8.net)
∴函數(shù)φ(x)在(1,+∞)上單調遞增.
∴函數(shù)φ(x)沒有極值點.…(7分)
若
時,
,
,
則x∈(1,x
1)時,φ'(x)>0;x∈(x
1,x
2)時,φ'(x)<0;x∈(x
2,+∞)時,φ'(x)>0.
∴函數(shù)φ(x)在(1,x
1)上單調遞增,在(x
1,x
2)上單調遞減,在(x
2,+∞)上單調遞增.
∴函數(shù)φ(x)有極小值點x
2,有極大值點x
1.…(8分)
綜上所述,當m>0時,k取任意實數(shù),函數(shù)φ(x)有極小值點x
2;
當m<0時,
,函數(shù)φ(x)有極小值點x
2,有極大值點x
1.…(9分)
(其中
,
)
解法2:由(1)得
=
.
∴φ(x)=g(x)-kln(x-1)=
-kln(x-1)的定義域為(1,+∞).
∴φ'(x)=1-
=
.…(3分)
若函數(shù)φ(x)=g(x)-kln(x-1)存在極值點等價于函數(shù)φ'(x)有兩個不等的零點,且
至少有一個零點在(1,+∞)上.…(4分)
令φ'(x)=
=0,
得x
2-(2+k)x+k-m+1=0,(*)
則△=(2+k)
2-4(k-m+1)=k
2+4m>0,(**) …(5分)
方程(*)的兩個實根為
,
.
設h(x)=x
2-(2+k)x+k-m+1,
①若x
1<1,x
2>1,則h(1)=-m<0,得m>0,此時,k取任意實數(shù),(**)成立.
則x∈(1,x
2)時,φ'(x)<0;x∈(x
2,+∞)時,φ'(x)>0.
∴函數(shù)φ(x)在(1,x
2)上單調遞減,在(x
2,+∞)上單調遞增.
∴函數(shù)φ(x)有極小值點x
2.…(6分)
②若x
1>1,x
2>1,則
得
又由(**)解得
或
,
故
.…(7分)
則x∈(1,x
1)時,φ'(x)>0;x∈(x
1,x
2)時,φ'(x)<0;x∈(x
2,+∞)時,φ'(x)>0.
∴函數(shù)φ(x)在(1,x
1)上單調遞增,在(x
1,x
2)上單調遞減,在(x
2,+∞)上單調遞增.
∴函數(shù)φ(x)有極小值點x
2,有極大值點x
1.…(8分)
綜上所述,當m>0時,k取任何實數(shù),函數(shù)φ(x)有極小值點x
2;
當m<0時,
,函數(shù)φ(x)有極小值點x
2,有極大值點x
1.…(9分)
(其中
,
)
(3)證法1:∵m=1,∴g(x)=
.
∴
=
=
.…(10分)
令T=
,
則T=
=
.
∵x>0,
∴2T=
…(11分)≥
…(12分)
=
=
=2(2
n-2).…(13分)
∴T≥2
n-2,即[g(x+1)]
n-g(x
n+1)≥2
n-2.…(14分)
證法2:下面用數(shù)學歸納法證明不等式
≥2
n-2.
①當n=1時,左邊=
,右邊=2
1-2=0,不等式成立;
…(10分)
②假設當n=k(k∈N
*)時,不等式成立,即
≥2
k-2,
則
=
=
…(11分)
=2
k+1-2.…(13分)
也就是說,當n=k+1時,不等式也成立.
由①②可得,對?n∈N
*,[g(x+1)]
n-g(x
n+1)≥2
n-2都成立.…(14分)
分析:(1)根據(jù)關于x的不等式f(x)<(2m-1)x+1-m
2的解集為(m,m+1),即不等式x
2+(a+1-2m)x+m
2+m<0的解集為(m,m+1),從而有x
2+(a+1-2m)x+m
2+m=(x-m)(x-m-1).化簡后對照系數(shù)即可得出a的值;
(2)由(1)得
=
.利用導數(shù)研究其單調性,從而得出極值的情形;
(3)當m=1時g(x)=
.利用二項定理化簡式子[g(x+1)]
n-g(x
n+1),再利用組合數(shù)的性質或數(shù)學歸納法進行證明即得對?n∈N
*,[g(x+1)]
n-g(x
n+1)≥2
n-2都成立.
點評:本小題主要考查二次函數(shù)、一元二次不等式、一元二次方程、函數(shù)應用、均值不等式等基礎知識,考查數(shù)形結合、函數(shù)與方程、分類與整合、化歸與轉化的數(shù)學思想方法,以及抽象概括能力、推理論證能力、運算求解能力、創(chuàng)新意識.