如圖所示,在正方體ABCD-A1B1C1D1中E、F分別在A1D、AC上,且A1E=
2
3
A1D,AF=
1
3
AC,則( 。
A.EF至多與A1D、AC之一垂直
B.EF是A1D、AC的公垂線
C.EF與BD1相交
D.EF與BD1異面
如圖所示

設(shè)AC∩BD=O,AD1∩A1D=O1,作EG⊥AD于G,F(xiàn)K⊥AD于K,由平幾知識(shí),GFDO,DO⊥AC,∴GF⊥AC,
∵EG⊥面ABCD,∴由三垂線逆定理EF⊥AC.
同理EF⊥A1D,
∴EF是A1D、AC公垂線
故選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

三棱錐P-ABC的三條側(cè)棱兩兩垂直,Q為底面上一點(diǎn),Q到三個(gè)側(cè)面的距離分別為3、4、5,則PQ的長(zhǎng)度為( 。
A.5B.5
2
C.4
2
D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知直二面角α-l-β,A∈α,B∈β,A,B兩點(diǎn)均不在直線l上,又直線AB與l成30°角,且線段AB=8,則線段AB的中點(diǎn)M到l的距離為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,P△ABC所在平面外一點(diǎn),PA=PB,CB⊥平面PAB,M是PC中點(diǎn),N是AB上的點(diǎn),AN=3NB,
(1)求證:MN⊥AB;
(2)當(dāng)∠PAB=90°,BC=2,AB=4時(shí),求MN的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

空間四邊形ABCD的各邊與兩條對(duì)角線的長(zhǎng)都是1,點(diǎn)P在邊AB上移動(dòng),點(diǎn)Q在CD上移動(dòng),則點(diǎn)P與Q的最短距離為( 。
A.
1
2
B.
2
2
C.
3
4
D.
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,是一個(gè)正方體的展開圖,如果將它還原為正方體,那么AB,CD,EF,GH這四條線段所在直線是異面直線的有( 。⿲(duì).
A.1對(duì)B.2對(duì)C.3對(duì)D.4對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

棱長(zhǎng)為a的正方體A1B1C1D1-ABCD中,O為面ABCD的中心.
(1)求證:AC1⊥平面B1CD1
(2)求四面體OBC1D1的體積;
(3)線段AC上是否存在P點(diǎn)(不與A點(diǎn)重合),使得A1P面CC1D1D?如果存在,請(qǐng)確定P點(diǎn)位置,如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,PA垂直于矩形ABCD所在的平面,M、N分別是AB、PC的中點(diǎn)
(1)求證:MN平面PAD;
(2)若∠PAD=45°,求證:MN⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在矩形ABCD中,已知AB=2AD=4,E為AB的中點(diǎn),現(xiàn)將△AED沿DE折起,使點(diǎn)A到點(diǎn)P處,滿足PB=PC,設(shè)M、H分別為PC、DE的中點(diǎn).
(1)求證:BM平面PDE;
(2)線段BC上是否存在一點(diǎn)N,使BC⊥平面PHN?試證明你的結(jié)論;
(3)求△PBC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案