已知函數(shù)f(x)=log4(22x+1)-
1
2
x,判斷并證明函數(shù)f(x)的奇偶性.
考點(diǎn):對數(shù)的運(yùn)算性質(zhì),函數(shù)奇偶性的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:函數(shù)f(x)=log4(22x+1)-
1
2
x是偶函數(shù).利用對數(shù)性質(zhì)能推導(dǎo)出f(-x)=f(x).
解答: 解:函數(shù)f(x)=log4(22x+1)-
1
2
x是偶函數(shù).
證明如下:
∵f(x)=log4(22x+1)-
1
2
x,
∴f(-x)=log4(2-2x+1)+
1
2
x

=log4
1+22x
22x
+
x
2

=log4(1+22x)-log422x+
x
2

=log4(22x+1)-
1
2
x=f(x).
∴函數(shù)f(x)是偶函數(shù).
點(diǎn)評:本題考查函數(shù)的奇偶性的判斷與證明,是中檔題,解題時要認(rèn)真審題,注意對數(shù)性質(zhì)的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若sinα+cosα=
2
6
5
,則α在第
 
象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出函數(shù)①f1(x)=x2;②f2(x)=lgx;③y=2x-2-x;④y=2x+2-x.其中是偶函數(shù)的有( 。
A、4個B、3個C、2個D、1個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=3sin(2x+
π
6
).
(1)求f(x)的最小正周期;
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=|lg(x-1)|,若0<a<b,且f(a)=f(b),則ab的取值范圍是( 。
A、[1,2]
B、(1,2)
C、(4,+∞)
D、(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,角A,B,C所對的邊分別為a,b,c,若c<bcosA,則△ABC為( 。
A、鈍角三角形B、直角三角形
C、銳角三角形D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若等差數(shù)列{an}滿足a3+a4+a5>0,a3+a6<0,則當(dāng)n=
 
時,{an}的前n項(xiàng)和最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

與y=|x|是同一個函數(shù)的是( 。
A、y=
x2
B、y=(
x
2
C、y=
3x3
D、y=x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3ln(x+1)+ax2-2x,a∈R,若f(x)在區(qū)間(0,+∞)單調(diào)遞增,求a的范圍.

查看答案和解析>>

同步練習(xí)冊答案