【題目】設(shè)函數(shù)fx)的定義域?yàn)?/span>R,如果存在函數(shù)gx),使得fxgx)對(duì)于一切實(shí)數(shù)x都成立,那么稱gx)為函數(shù)fx)的一個(gè)承托函數(shù).已知函數(shù)fx=ax2+bx+c的圖象經(jīng)過點(diǎn)(-1,0).

1)若a=1,b=2.寫出函數(shù)fx)的一個(gè)承托函數(shù)(結(jié)論不要求證明);

2)判斷是否存在常數(shù)a,b,c,使得y=x為函數(shù)fx)的一個(gè)承托函數(shù),且fx)為函數(shù)的一個(gè)承托函數(shù)?若存在,求出a,b,c的值;若不存在,說明理由.

【答案】1gx=x 2)存在,a=c=,b=

【解析】

1)由題意可得c=1,進(jìn)而得到fx),可取gx=x;

2)假設(shè)存在常數(shù)a,b,c滿足題意,令x=1,可得a+b+c=1,再由二次不等式恒成立問題解法,運(yùn)用判別式小于等于0,化簡(jiǎn)整理,即可判斷存在.

1)函數(shù)fx=ax2+bx+c的圖象經(jīng)過點(diǎn)(-1,0),

可得a-b+c=0,又a=1,b=2,

fx=x2+2x+1,

由新定義可得gx=x為函數(shù)fx)的一個(gè)承托函數(shù);

2)假設(shè)存在常數(shù)a,b,c,使得y=x為函數(shù)fx)的一個(gè)承托函數(shù),

fx)為函數(shù)的一個(gè)承托函數(shù).

即有xax2+bx+cx2+恒成立,

x=1可得1≤a+b+c≤1,即為a+b+c=1,

1-b=a+c,

ax2+b-1x+c≥0恒成立,可得a0,且(b-12-4ac≤0

即為(a+c2-4ac≤0,即有a=c

又(a-x2+bx+c-≤0恒成立,

可得a,且b2-4a-)(c-≤0,

即有(1-2a2-4a-2≤0恒成立.

故存在常數(shù)a,b,c,且0a=cb=1-2a,

可取a=c=b=.滿足題意.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.在極坐標(biāo)系中有射線和曲線.

(1)判斷射線和曲線公共點(diǎn)的個(gè)數(shù);

(2)若射線與曲線 交于兩點(diǎn),且滿足,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年元旦假期,高三的8名同學(xué)準(zhǔn)備拼車去旅游,其中班、班,班、班每班各兩名,分乘甲乙兩輛汽車,每車限坐4名同學(xué)乘同一輛車的4名同學(xué)不考慮位置,其中班兩位同學(xué)是孿生姐妹,需乘同一輛車,則乘坐甲車的4名同學(xué)中恰有2名同學(xué)是來自同一個(gè)班的乘坐方式共有  

A. 18 B. 24 C. 48 D. 36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某聯(lián)歡晚會(huì)舉行抽獎(jiǎng)活動(dòng),舉辦方設(shè)置了甲、乙兩種抽獎(jiǎng)方案,方案甲的中獎(jiǎng)率為,中獎(jiǎng)可以獲得2分:方案乙的中獎(jiǎng)率為,中獎(jiǎng)可以獲得3分;未中獎(jiǎng)則不得分.每人有且只有一次抽獎(jiǎng)機(jī)會(huì),每次抽獎(jiǎng)中獎(jiǎng)與否互不影響,晚會(huì)結(jié)束后憑分?jǐn)?shù)兌換獎(jiǎng)品.

(1)若小明選擇方案甲抽獎(jiǎng),小紅選擇方案乙抽獎(jiǎng),記他們的累計(jì)得分為,求的概率;

(2)若小明、小紅兩人都選擇方案甲或都選擇方案乙進(jìn)行抽獎(jiǎng),問:他們選擇何種方案抽獎(jiǎng),累計(jì)得分的均值較大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某協(xié)會(huì)對(duì),兩家服務(wù)機(jī)構(gòu)進(jìn)行滿意度調(diào)查,在,兩家服務(wù)機(jī)構(gòu)提供過服務(wù)的市民中隨機(jī)抽取了人,每人分別對(duì)這兩家服務(wù)機(jī)構(gòu)進(jìn)行獨(dú)立評(píng)分,滿分均為分.整理評(píng)分?jǐn)?shù)據(jù),將分?jǐn)?shù)以為組距分成組:,,,,,,得到服務(wù)機(jī)構(gòu)分?jǐn)?shù)的頻數(shù)分布表,服務(wù)機(jī)構(gòu)分?jǐn)?shù)的頻率分布直方圖:

定義市民對(duì)服務(wù)機(jī)構(gòu)評(píng)價(jià)的“滿意度指數(shù)”如下:

分?jǐn)?shù)

滿意度指數(shù)

0

1

2

(1)在抽樣的人中,求對(duì)服務(wù)機(jī)構(gòu)評(píng)價(jià)“滿意度指數(shù)”為的人數(shù);

(2)從在,兩家服務(wù)機(jī)構(gòu)都提供過服務(wù)的市民中隨機(jī)抽取人進(jìn)行調(diào)查,試估計(jì)對(duì)服務(wù)機(jī)構(gòu)評(píng)價(jià)的“滿意度指數(shù)”比對(duì)服務(wù)機(jī)構(gòu)評(píng)價(jià)的“滿意度指數(shù)”高的概率;

(3)如果從,服務(wù)機(jī)構(gòu)中選擇一家服務(wù)機(jī)構(gòu),以滿意度出發(fā),你會(huì)選擇哪一家?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是正方形,平面分別是線段的中點(diǎn),.

(1)求證:∥平面;

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ACDE與等腰直角三角形ACB所在的平面互相垂直,且AC=BC=2,ACB=90°,F,G分別是線段AE,BC的中點(diǎn),則AD與GF所成的角的余弦值為(  )

(A) (B)- (C) (D)-

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-5:不等式選講]

已知函數(shù).

(Ⅰ)當(dāng)時(shí),求的解集;

(Ⅱ)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個(gè)焦點(diǎn)與上、下頂點(diǎn)構(gòu)成直角三角形,以橢圓的長(zhǎng)軸長(zhǎng)為直徑的圓與直線相切.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)過橢圓右焦點(diǎn)且不平行于軸的動(dòng)直線與橢圓相交于兩點(diǎn),探究在軸上是否存在定點(diǎn),使得為定值?若存在,試求出定值和點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案