若函數(shù)y=ax-ex有小于零的極值點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A、(0,+∞)
B、(0,1)
C、(-∞,1)
D、(-1,1)
考點(diǎn):函數(shù)在某點(diǎn)取得極值的條件
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:先對函數(shù)進(jìn)行求導(dǎo)令導(dǎo)函數(shù)等于0,原函數(shù)有小于0的極值故導(dǎo)函數(shù)有小于0的根,然后轉(zhuǎn)化為兩個函數(shù)觀察交點(diǎn),確定a的范圍.
解答: 解:∵y=ax-ex
∴y'=a-ex
由題意知a-ex=0有小于0的實(shí)根,令y1=ex,y2=a,則兩曲線交點(diǎn)在第二象限,
結(jié)合圖象易得0<a<1,
故實(shí)數(shù)a的取值范圍是(0,1),
故選:B.
點(diǎn)評:本題主要考查函數(shù)的極值與其導(dǎo)函數(shù)的關(guān)系,即函數(shù)取到極值時一定有其導(dǎo)函數(shù)等于0,但反之不一定成立.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)P(4,6)作直線l,分別交x軸、y軸正方向于A、B兩點(diǎn).當(dāng)△ABC面積為64時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正三棱柱ABC-A1B1C1中,AA1=2,AB=
3
,E是A1B1上一動點(diǎn),則AE+EC1的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,a1+a9=16,則a5的值是( 。
A、8B、6C、4D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在(-∞,+∞)上的奇函數(shù),且y=f(x)的圖象關(guān)于直線x=
1
2
對稱,則f(1)+f(2)+f(3)+f(4)+f(5)=( 。
A、0B、1C、3D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P為橢圓C:
x2
25
+
y2
16
=1上一點(diǎn),O為坐標(biāo)原點(diǎn)F1,F(xiàn)2為其左右焦點(diǎn),且PF1=4,M為線段PF1的中點(diǎn),則線段OM的長為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式組
2x-y+2≥0
x+y-2≤0
y≥0
表示的平面區(qū)域的形狀為( 。
A、三角形B、平行四邊形
C、梯形D、正方形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個命題,
(1)a+b≥2
ab
,(2)sin2x+
4
sin2x
的最小值是4,
(3)設(shè)x,y∈R+,若
1
x
+
9
y
=1,則x+y的最小值是4.
(4)若|x-2|<ε,|y-2|<ε,則|x-y|<2ε.
其中正確命題的個數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:函數(shù)f(x)=
x
x+2
在區(qū)間(-∞,-2)上是增函數(shù).

查看答案和解析>>

同步練習(xí)冊答案