【題目】已知對(duì)任意實(shí)數(shù)x,有f(﹣x)=﹣f(x),g(﹣x)=g(x),且x>0時(shí),f′(x)>0,g′(x)>0,則x<0時(shí)(
A.f′(x)>0,g′(x)>0
B.f′(x)>0,g′(x)<0
C.f′(x)<0,g′(x)>0
D.f′(x)<0,g′(x)<0

【答案】B
【解析】解:∵對(duì)任意實(shí)數(shù)x,有f(﹣x)=﹣f(x),g(﹣x)=g(x), ∴f(x)為奇函數(shù);g(x)為偶函數(shù),
∵x>0時(shí),f′(x)>0,g′(x)>0,
∴f(x)在(0,+∞)上為增函數(shù);g(x)在(0,+∞)上為增函數(shù),
∴f(x)在(﹣∞,0)上為增函數(shù);g(x)在(﹣∞,0)上為減函數(shù),
∴f′(x)>0;g′(x)<0,
故選:B.
【考點(diǎn)精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識(shí)點(diǎn),需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,已知
(1)求tanA;
(2)若 ,且 ,求sinB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=ax , y=xb , y=logcx的圖象如圖所示,則a,b,c的大小關(guān)系為 . (用“<”號(hào)連接)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合U={1,2,3,4,5,6},A={1,2,3,5},B={3,5,6}.
(Ⅰ)求A∩B;
(Ⅱ)求(UA)∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長期收益率市場預(yù)測,投資債券類穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票類風(fēng)險(xiǎn)型產(chǎn)品的收益與投資額的算術(shù)平方根成正比,已知兩類產(chǎn)品各投資1萬元時(shí)的收益分別為0.125萬元和0.5萬元,如圖:

(Ⅰ)分別寫出兩類產(chǎn)品的收益y(萬元)與投資額x(萬元)的函數(shù)關(guān)系;
(Ⅱ)該家庭有20萬元資金,全部用于理財(cái)投資,問:怎么分配資金能使投資獲得最大收益,最大收益是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 有兩個(gè)零點(diǎn).
(1)若函數(shù)的兩個(gè)零點(diǎn)是 ,求 的值;
(2)若函數(shù)的兩個(gè)零點(diǎn)是 ,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐P﹣ABCD中底面四邊形ABCD是正方形,各側(cè)面都是邊長為2的正三角形,M是棱PC的中點(diǎn).建立空間直角坐標(biāo)系,利用空間向量方法解答以下問題:
(1)求證:PA∥平面BMD;
(2)求二面角M﹣BD﹣C的平面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù) 的圖象上所有點(diǎn)向左平行移動(dòng) 個(gè)單位長度,得到函數(shù)g(x)的圖象,則g(x)圖象的一條對(duì)稱軸的方程是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b∈R,若a2+b2﹣ab=1,則ab的取值范圍是

查看答案和解析>>

同步練習(xí)冊答案