12.邊長分別為a、b的矩形,按圖中所示虛線剪裁后,可將兩個小矩形拼接成一個正四棱錐的底面,其余恰好拼接成該正四棱錐的4個側面,則$\frac{a}$的取值范圍是($\frac{1}{2}$,+∞).

分析 由題意可得正四棱錐的底面邊長為$\frac{a}{2}$,斜高為b-$\frac{a}{4}$,再根據(jù)斜高大于底面邊長的一半,求得$\frac{a}$的取值范圍.

解答 解:由題意可得正四棱錐的底面邊長為$\frac{a}{2}$,斜高為b-$\frac{a}{4}$,
再根據(jù)斜高b-$\frac{a}{4}$ 大于底面邊長的一半,可得b-$\frac{a}{4}$>$\frac{a}{4}$,即b>$\frac{a}{2}$,求得 $\frac{a}$>$\frac{1}{2}$.
故答案為:($\frac{1}{2}$,+∞).

點評 本題主要考查棱錐的結構特征,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

2.已知某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的體積是100cm3,表面積是($124+2\sqrt{34}$)cm2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.某超市為了解顧客的購物量及結算時間等信息,安排一名員工隨機收集了在該超市購物的相關數(shù)據(jù),如表所示.
一次購物量1至4件5至8件9至12件13至16件17件以上
顧客數(shù)(人)x3025y10
結算時間(分鐘/人)11.522.53
已知這100位顧客中的一次購物量超過8件的顧客占55%.
(1)求x,y的值.
(2)求顧客一次購物的結算時間超過2分鐘的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-2,3),且(λ$\overrightarrow{a}$-$\overrightarrow$)與($\overrightarrow{a}$+$\overrightarrow$)垂直,求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.某公司為確定下一年度投入某種產品的宣傳費,需了解年宣傳費x(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響,對近8年的宣傳費xi和年銷售量yi(i=1,2,3,..8)數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.
$\overline{x}$$\overline{y}$$\overline{w}$$\sum_{i=1}^{8}$(xi-$\overline{x}$)2$\sum_{i=1}^{8}$(wi-$\overline{w}$)2$\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$)$\sum_{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$)
46.65636.8289.81.61469108.8
表中:${w_i}=\sqrt{x_i}$    $\overline{w}$=$\sum_{i=1}^{8}$wi
(Ⅰ)根據(jù)散點圖判斷,y=a+bx與$y=c+d\sqrt{x}$,哪一個適宜作為年銷售量y關于年宣傳費x的回歸方程類型(給出判斷即可,不必說明理由);
(Ⅱ)根據(jù)(I)的判斷結果及表中數(shù)據(jù),建立y關于x的回歸方程;
(Ⅲ)已知這種產品的年利潤z與x,y的關系為z=0.2y-x,根據(jù)(II)的結果回答下列問題:
(i)當年宣傳費x=49時,年銷售量及年利潤的預報值時多少?
(ii)當年宣傳費x為何值時,年利潤的預報值最大?并求出最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.如果數(shù)列a1,$\frac{a_2}{a_1}$,$\frac{a_3}{a_2}$,…,$\frac{a_n}{{{a_{n-1}}}}$,…是首項為1,公比為$\sqrt{2}$的等比數(shù)列,${b_n}=\frac{1}{{{{log}_2}{a_n}}}$,n≥2,$\lim_{n→∞}({b_2}+{b_3}…+{b_n})$=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.北京某大學為第十八屆四中全會招募了30名志愿者(編號分別是1,2,…30號),現(xiàn)從中任意選取6人按編號大小分成兩組分配到江西廳、廣電廳工作,其中三個編號較小的人在一組,三個編號較大的在另一組,那么確保6號、15號與24號同時入選并被分配到同一廳的選取種數(shù)是( 。
A.25B.32C.60D.100

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=12.
(1)求數(shù)列{an}的通項公式;
(2)令bn=an•($\sqrt{3}$)${\;}^{{a}_{n}}$,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.記直線x-3y-1=0的傾斜角為α,曲線y=lnx在(2,ln2)處切線的傾斜角為β.則α-β=-arctan$\frac{1}{7}$.

查看答案和解析>>

同步練習冊答案