【題目】已知拋物線的焦點為,拋物線上的點到準線的最小距離為.
(1)求拋物線的方程;
(2)若過點作互相垂直的兩條直線、,與拋物線交于兩點,與拋物線交于兩點,分別為弦的中點,求的最小值.
【答案】(1)(2)8
【解析】
(1)由拋物線上到準線的距離最小的點是頂點可求得,得拋物線方程;
(2)首先題意說明兩直線的斜率都存在且均不為,設直線的斜率為,則直線的斜率為,設點,,由直線方程與拋物線方程聯(lián)立,消元后應用韋達定理求得中點的坐標,求出,同理可得,計算后應用基本不等式可得最小值.
(1)∵拋物線上的點到準線的最小距離為,∴,解得,
∴拋物線的方程為:;
(2)由(1)可知焦點為,
由已知可得,∴兩直線的斜率都存在且均不為,
設直線的斜率為,則直線的斜率為,
∴直線的方程為,
聯(lián)立方程,消去得:,
設點,,則,
∵為弦的中點,所以,
由,得,
∴點,
同理可得:,
∴,,
∴,
當且僅當,即,等號成立,
∴的最小值為.
科目:高中數(shù)學 來源: 題型:
【題目】若正項數(shù)列的首項為,且當數(shù)列是公比為的等比數(shù)列時,則稱數(shù)列為“數(shù)列”.
(1)已知數(shù)列的通項公式為,證明:數(shù)列為“數(shù)列”;
(2)若數(shù)列為“數(shù)列”,且對任意,、、成等差數(shù)列,公差為.
①求與間的關系;
②若數(shù)列為遞增數(shù)列,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在發(fā)生公共衛(wèi)生事件期間,有專業(yè)機構(gòu)認為該事件在一段時間內(nèi)沒有發(fā)生大規(guī)模群體感染的標志為“連續(xù)10天,每天新增疑似病例不超過7人”.過去10日,A、B、C、D四地新增疑似病例數(shù)據(jù)信息如下:
A地:中位數(shù)為2,極差為5; B地:總體平均數(shù)為2,眾數(shù)為2;
C地:總體平均數(shù)為1,總體方差大于0; D地:總體平均數(shù)為2,總體方差為3.
則以上四地中,一定符合沒有發(fā)生大規(guī)模群體感染標志的是_______(填A、B、C、D)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線:,其焦點到準線的距離為2.直線與拋物線交于,兩點,過,分別作拋物線的切線與,與交于點.
(1)求拋物線的標準方程;
(2)若,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓過橢圓的左、右焦點和短軸的端點(點在點上方).為圓上的動點(點不與重合),直線分別與橢圓交于點,其中點構(gòu)成四邊形.
(1)求橢圓的標準方程;
(2)求四邊形面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在我國瓷器的歷史上六棱形的瓷器非常常見,因為六,八是中國人的吉利數(shù)字,所以好多器都做成六棱形和八棱形,數(shù)學李老師有一個正六棱柱形狀的筆筒,底面邊長為6cm,高為18cm(底部及筒壁厚度忽略不計),一長度為cm的圓鐵棒l(粗細忽略不計)斜放在筆筒內(nèi)部,l的一端置于正六柱某一側(cè)棱的展端,另一端置于和該側(cè)棱正對的側(cè)棱上.一位小朋友玩耍時,向筆筒內(nèi)注水,恰好將圓鐵棒淹沒,又將一個圓球放在筆筒口,球面又恰好接觸水面,則球的表面積為_____cm2.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“克拉茨猜想”又稱“猜想”,是德國數(shù)學家洛薩克拉茨在年世界數(shù)學家大會上公布的一個猜想:任給一個正整數(shù),如果是偶數(shù),就將它減半;如果為奇數(shù)就將它乘加,不斷重復這樣的運算,經(jīng)過有限步后,最終都能夠得到,得到即終止運算,己知正整數(shù)經(jīng)過次運算后得到,則的值為( )
A.或B.或C.D.或或
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的短軸長為,離心率為.
(1)求橢圓的方程;
(2)若動直線與橢圓有且僅有一個公共點,分別過兩點作,垂足分別為,且記為點到直線的距離, 為點到直線的距離,為點到點的距離,試探索是否存在最大值.若存在,求出最大值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場推出消費抽現(xiàn)金活動,顧客消費滿1000元可以參與一次抽獎,該活動設置了一等獎、二等獎、三等獎以及參與獎,獎金分別為:一等獎200元、二等獎100元、三等獎50元、參與獎20元,具體獲獎人數(shù)比例分配如圖,則下列說法中錯誤的是( )
A.獲得參與獎的人數(shù)最多
B.各個獎項中一等獎的總金額最高
C.二等獎獲獎人數(shù)是一等獎獲獎人數(shù)的兩倍
D.獎金平均數(shù)為元
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com