【題目】某小型工廠安排甲、乙兩種產(chǎn)品的生產(chǎn),已知工廠生產(chǎn)甲、乙兩種產(chǎn)品每噸所需要的原材料A,B,C的數(shù)量和一周內(nèi)可用資源數(shù)量如下表所示:
原材料 | 甲(噸) | 乙(噸) | 資源數(shù)量(噸) |
A | 1 | 1 | 50 |
B | 4 | 0 | 160 |
C | 2 | 5 | 200 |
如果甲產(chǎn)品每噸的利潤為300元,乙產(chǎn)品每噸的利潤為200元,那么適當(dāng)安排生產(chǎn)后,工廠每周可獲得的最大利潤為______元.
【答案】14000元
【解析】
設(shè)工廠一周內(nèi)安排生產(chǎn)甲產(chǎn)品x噸、乙產(chǎn)品y噸,所獲周利潤為z元.依據(jù)題意,得目標(biāo)函數(shù)為,約束條件為.畫出約束條件的可行域,利用線性規(guī)劃求其最優(yōu)解即可.
設(shè)工廠一周內(nèi)安排生產(chǎn)甲產(chǎn)品x噸、乙產(chǎn)品y噸,所獲周利潤為z元.依據(jù)題意,得目標(biāo)函數(shù)為,約束條件為.畫出約束條件的可行域,如圖陰影部分所示.求得有關(guān)點,將直線300x+200y=0向上平移,當(dāng)經(jīng)過可行域的點B時,函數(shù)的值最大,且最大值為14000.故工廠每周生產(chǎn)甲產(chǎn)品40噸,乙產(chǎn)品10噸時,工廠可獲得最大的周利潤14000元.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一個口袋中裝有n個紅球(n≥1且n∈N+)和2個白球,從中有放回地連續(xù)摸三次,每次摸出2個球,若2個球顏色不同則為中獎,否則不中獎.
(1)當(dāng)n=3時,設(shè)三次摸球中中獎的次數(shù)為X,求隨機變量X的分布列;
(2)記三次摸球中恰有兩次中獎的概率為P,求當(dāng)n取多少時,P的值最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某海上養(yǎng)殖基地A,接到氣象部門預(yù)報,位于基地南偏東60°方向相距20(+1)海里的海面上有一臺風(fēng)中心,影響半徑為20海里,正以每小時10海里的速度沿某一方向勻速直線前進,預(yù)計臺風(fēng)中心在基地東北方向時對基地的影響最強烈且(+1)小時后開始影響基地持續(xù)2小時,求臺風(fēng)移動的方向.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x﹣1)的圖象關(guān)于直線x=1對稱,且當(dāng)x∈(﹣∞,0)時,f(x)+xf′(x)<0成立若a=(20.2)f(20.2),b=(1n2)f(1n2),c=( )f( ),則a,b,c的大小關(guān)系是( )
A.a>b>c
B.b>a>c
C.c>a>b
D.a>c>b
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是邊長為4的等邊三角形,△ABD是等腰直角三角形,AD⊥BD,平面ABC⊥平面ABD,且EC⊥平面ABC,EC=2.
(1)求證:AD⊥BE
(2)求平面AEC和平面BDE所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)分別為橢圓的左、右焦點,點為橢圓的左頂點,點為橢圓的上頂點,且.
(1)若橢圓的離心率為,求橢圓的方程;
(2)設(shè)為橢圓上一點,且在第一象限內(nèi),直線與軸相交于點,若以為直徑的圓經(jīng)過點,證明:點在直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有下列四個命題:
①“已知函數(shù)y=f(x),x∈ D,若D關(guān)于原點對稱,則函數(shù)y=f(x),x∈ D為奇函數(shù)”的逆命題;
②“對應(yīng)邊平行的兩角相等”的否命題;
③“若a≠0,則方程ax+b=0有實根”的逆否命題;
④“若A∪ B=B,則B≠A”的逆否命題.
其中的真命題是( )
A. ①② B. ②③
C. ①③ D. ③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和Sn=10n﹣n2(n∈N*),又bn=|an|(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com