如圖,在四棱錐P-ABCD中,底面ABCD為矩形,PD⊥底面ABCD,E是AB上一點.已知PD=,CD=4,AD=
(Ⅰ)若∠ADE=,求證:CE⊥平面PDE;
(Ⅱ)當(dāng)點A到平面PDE的距離為時,求三棱錐A-PDE的側(cè)面積.

【答案】分析:(Ⅰ)在Rt△DAE中,求出BE=3.在Rt△EBC中,求出∠CEB=.證明CE⊥DE.PD⊥CE.即可證明CE⊥平面PDE.
(Ⅱ)證明平面PDE⊥平面ABCD.過A作AF⊥DE于F,求出AF.證明BA⊥平面PAD,BA⊥PA.然后求出三棱錐A-PDE的側(cè)面積S側(cè)=++
解答:(本小題滿分12分)
解:(Ⅰ)在Rt△DAE中,AD=,∠ADE=,
∴AE=AD•tan∠ADE==1.
又AB=CD=4,∴BE=3.
在Rt△EBC中,BC=AD=,∴tan∠CEB==,∴∠CEB=
又∠AED=,∴∠DEC=,即CE⊥DE.
∵PD⊥底面ABCD,CE?底面ABCD,
∴PD⊥CE.
∴CE⊥平面PDE.…(6分)
(Ⅱ)∵PD⊥底面ABCD,PD?平面PDE,
∴平面PDE⊥平面ABCD.
如圖,過A作AF⊥DE于F,∴AF⊥平面PDE,
∴AF就是點A到平面PDE的距離,即AF=
在Rt△DAE中,由AD•AE=AF•DE,得
AE=,解得AE=2.
∴S△APD=PD•AD=××=,
S△ADE=AD•AE=××2=,
∵BA⊥AD,BA⊥PD,∴BA⊥平面PAD,
∵PA?平面PAD,∴BA⊥PA.
在Rt△PAE中,AE=2,PA===,
∴S△APE=PA•AE=××2=
∴三棱錐A-PDE的側(cè)面積S側(cè)=++.…(12分)
點評:本題考查直線與平面垂直,幾何體的體積的求法,考查計算能力,空間想象能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)證明AD⊥PB;
(2)求二面角P-BD-A的正切值大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,點A在PD上的射影為點G,點E在AB上,平面PEC⊥平面PDC.
(1)求證:AG∥平面PEC;
(2)求AE的長;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求證:平面PBD⊥平面PAC.
(Ⅱ)求四棱錐P-ABCD的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面是邊長為a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E為PB中點
(1)求證;平面ACE⊥面ABCD;
(2)求三棱錐P-EDC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•武漢模擬)如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距離.

查看答案和解析>>

同步練習(xí)冊答案