(本小題滿分13分)

如圖,在四棱錐中,底面是正方形.已知,.

(Ⅰ)求證:;

(Ⅱ)求四棱錐的體積

 

【答案】

(1)根據(jù)底面的形狀,可知,然后利用線面垂直的性質(zhì)定理得到證明。

(2)

【解析】

試題分析:(Ⅰ)證明:底面是矩形,

,                                               ………………………1分

,

 ,                                               ………………………3分

 ,

                                            ………………………5分

.                                              ………………………6分

(Ⅱ)取的中點,連接

,

,                                      ………………………8分

,

,

是四棱錐的高,                              ………………………11分

.                                   ………………………13分

考點:本試題考查了垂直的證明以及體積。

點評:解決該試題的關鍵是能熟練的運用空間中線面垂直的判定定理,以及等體積法來求解幾何體的體積問題,也可以作出幾何體的高,利用面面垂直的性質(zhì)定理來得到垂線,屬于基礎題。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2015屆江西省高一第二次月考數(shù)學試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數(shù).

(1)求函數(shù)的最小正周期和最大值;

(2)在給出的直角坐標系中,畫出函數(shù)在區(qū)間上的圖象.

(3)設0<x<,且方程有兩個不同的實數(shù)根,求實數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數(shù)學 題型:解答題

(本小題滿分13分)已知定義域為的函數(shù)是奇函數(shù).

(1)求的值;(2)判斷函數(shù)的單調(diào)性;

(3)若對任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數(shù)學 題型:解答題

(本小題滿分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:河南省09-10學年高二下學期期末數(shù)學試題(理科) 題型:解答題

 

(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,的中點。

(Ⅰ)求證:∥平面

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年福建省高三5月月考調(diào)理科數(shù)學 題型:解答題

(本小題滿分13分)

已知為銳角,且,函數(shù),數(shù)列{}的首項.

(1) 求函數(shù)的表達式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數(shù)列的前項和

 

 

查看答案和解析>>

同步練習冊答案