精英家教網 > 高中數學 > 題目詳情
(本小題滿分14分)
已知橢圓的兩焦點為,,并且經過點.
(1)求橢圓的方程;
(2)已知圓:,直線:,證明當點在橢圓上運動時,直線與圓恒相交;并求直線被圓所截得的弦長的取值范圍.
解:(1)解法一:設橢圓的標準方程為,
由橢圓的定義知:

得   
的方程為.                                    ...............4分          
解法二:設橢圓的標準方程為,
依題意,①, 將點坐標代入得
由①②解得,故的方程為.          ...............4分
(2)因為點在橢圓上運動,所以,則,
從而圓心到直線的距離,
所以直線與圓相交.                                      ............... 8 分
直線被圓所截的弦長為

...............10 分

.                                          ...............14 分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,已知分別是橢圓)的左、右焦點,且橢圓的離心率,也是拋物線的焦點.

(Ⅰ)求橢圓的方程;
(Ⅱ)過點的直線交橢圓,兩點,且,點關于軸的對稱點為,求直線的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

過橢圓左焦點且傾斜角為的直線交橢圓于兩點,若,則橢圓的離心率等于
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設直線與橢圓相交于兩點,分別過軸作垂線,若垂足恰為橢圓的兩個焦點,則等于(    ).
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

( (本題滿分15分
)橢圓的中心在原點,焦點在軸上,離心率為,并與直線相切.

(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,過圓上任意一點作橢圓的兩條切線. 求證:

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓C:的短軸長為,右焦點與拋物線的焦點重合, 為坐標原點
(1)求橢圓C的方程;
(2)設、是橢圓C上的不同兩點,點,且滿足,若,求直線AB的斜率的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

橢圓,焦點為,橢圓上的點滿,則的面積是

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知橢圓的焦點F1,F2,短軸長為8,離心率為,過F1的直線交橢圓于A、B兩點,則的周長為( 。
A、10           B、20           C、30          D、40

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知為中心在原點焦點在的橢圓的左、右焦點,拋物線為頂點,為焦點,設為橢圓與拋物線的一個交點,如果橢圓的離心率為,且,則的值為(   )
                                

查看答案和解析>>

同步練習冊答案