【題目】已知函數(shù)f(x)的定義域是D,若存在常數(shù)m、M,使得m≤f(x)≤M對任意x∈D成立,則稱函數(shù)f(x)是D上的有界函數(shù),其中m稱為函數(shù)f(x)的下界,M稱為函數(shù)f(x)的上界;特別地,若“=”成立,則m稱為函數(shù)f(x)的下確界,M稱為函數(shù)f(x)的上確界. (Ⅰ)判斷 是否是有界函數(shù)?說明理由;
(Ⅱ)若函數(shù)f(x)=1+a2x+4x(x∈(﹣∞,0))是以﹣3為下界、3為上界的有界函數(shù),求實數(shù)a的取值范圍;
(Ⅲ)若函數(shù) ,T(a)是f(x)的上確界,求T(a)的取值范圍.

【答案】解:(Ⅰ)f(x)= = , ∵x≥0,∴ + ≥1,
∴0<f(x)≤1,函數(shù)f(x)是有界函數(shù),
令t=3x , 則t>0,
∴y=t2﹣3t≥﹣1即g(x)∈[﹣1,+∞),
∴g(x)不是有界函數(shù);
(Ⅱ)∵函數(shù)f(x)=1+a2x+4x , (x∈(﹣∞,0))是以﹣3為下界,3為上界的有界函數(shù),
∴﹣3≤1+a2x+4x≤3在(﹣∞,0)上恒成立,
即﹣2x ≤a≤ ﹣2x在(﹣∞,0)上恒成立,
令t=2x , g(t)=﹣t﹣ ,h(t)=﹣t+ ,
∵x<0,∴0<t<1,
設(shè)t1 , t2∈(0,1),且t1<t2 ,
則g(t1)﹣g(t2)= <0,
∴g(t)在(0,1)遞增,
故g(t)<g(1)=﹣5,∴a≥﹣5,h(t1)﹣h(t2)>0,
∴h(t)在(0,1)上是減函數(shù),
故h(t)>h(1)=1,
∴a≤1,
綜上,實數(shù)a的范圍是[﹣5,1];
(Ⅲ)由y= ,得:a2x=
∵x∈[0,1],a>0,
∴a≤a2x≤2a,
即a≤ ≤2a,
≤y≤ ,
故T(a)= =﹣1+ ,
∵a>0,
∴T(a)的范圍是(﹣1,1)
【解析】(Ⅰ)根據(jù)有界函數(shù)的定義分別求出f(x),g(x)的范圍,從而判斷是否有界即可;(Ⅱ)問題轉(zhuǎn)化為﹣2x ≤a≤ ﹣2x在(﹣∞,0)上恒成立,令t=2x , g(t)=﹣t﹣ ,h(t)=﹣t+ ,根據(jù)函數(shù)的單調(diào)性求出t的范圍即可;(Ⅲ)求出a≤ ≤2a,根據(jù) ≤y≤ ,得到T(a)= ,從而求出T(a)的范圍即可.
【考點精析】利用函數(shù)的最值及其幾何意義對題目進行判斷即可得到答案,需要熟知利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲担焕脠D象求函數(shù)的最大(。┲;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(。┲担

相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量,,函數(shù)的最大值為.

(1)求的大;

(2)將函數(shù)的圖象向左平移個單位,再將所得圖象上各點的橫坐標縮短為原來的,縱坐標不變,得到函數(shù)的圖象,作出函數(shù)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=cos2x+2 sinxcosx﹣sin2x.
(1)求f(x)的最小正周期和值域;
(2)在△ABC中,角A,B,C所對的邊分別是a,b,c,若 且a2=bc,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)離心率為 的橢圓 的左、右焦點為 , PE上一點, , 內(nèi)切圓的半徑為 .

(1)E的方程;

(2)矩形ABCD的兩頂點CD在直線,AB在橢圓E,若矩形ABCD的周長為 , 求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩定點, ,曲線上的動點滿足,直線與曲線的另一個交點為

)求曲線的標準方程;

)設(shè)點,若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】假設(shè)關(guān)于某設(shè)備的使用年限x(年)和所支出的維修費用y(萬元)有如下的統(tǒng)計資料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0


(1)畫出散點圖并判斷是否線性相關(guān);
(2)如果線性相關(guān),求線性回歸方程;
(3)估計使用年限為10年時,維修費用是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2x3+bx2+cx,其導(dǎo)函數(shù)y=f′(x)的圖象(如圖所示)經(jīng)過點(1,0),(2,0). (Ⅰ)求f(x)的解析式;
(Ⅱ)若方程f(x)﹣m=0恰有2個根,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)Ox、Oy是平面內(nèi)相交成45°角的兩條數(shù)軸, 、 分別是x軸、y軸正方向同向的單位向量,若向量 =x +y ,則把有序數(shù)對(x,y)叫做向量 在坐標系xOy中的坐標,在此坐標系下,假設(shè) =(﹣2,2 ), =(2,0), =(5,﹣3 ),則下列命題不正確的是(
A. =(1,0)
B.| |=2
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,以A為圓心,AD為半徑的圓交ACABM,E.CE的延長線交⊙AF,CM=2,AB=4.

(1)求⊙A的半徑;

(2)求CE的長和△AFC的面積

查看答案和解析>>

同步練習(xí)冊答案