21、如圖,△ABC內(nèi)接于圓⊙,點(diǎn)D是圓⊙上異于A、B、C三點(diǎn)的任意一點(diǎn),過(guò)D點(diǎn)作DP⊥AB,DQ⊥BC,DR⊥AC,交AB、BC、AC分別為P,Q,R.
(1)求證:∠BDP=∠CDR;
(2)求證:P,Q,R三點(diǎn)共線.
分析:(1)由已知中四邊形ABDC為圓內(nèi)接四邊形,根據(jù)圓內(nèi)接四邊形性質(zhì),我們易得∠DBP=∠DCP,結(jié)合已知中DP⊥AB,DR⊥AC,根據(jù)等角的余角相等,即可得到答案.
(2)由已知中DP⊥AB,DQ⊥BC,可判斷出P、D、Q、B四點(diǎn)共圓,進(jìn)而根據(jù)圓周角定理得到∠PQD=∠PBD,同理可得∠RQC=∠RDC,結(jié)合(1)中結(jié)論,我們易證明∠PQD+∠RQD=180°,進(jìn)而得到P、Q、R三點(diǎn)共線.
解答:證明:(1)由已知可得四邊形ABDC為圓內(nèi)接四邊形
則∠DBP=∠DCP
又∵DP⊥AB,DR⊥AC,
∴∠BDP=90°-∠DBP,∠CDR=90°-∠DCP;
∴∠BDP=∠CDR;
(2)∵DP⊥AB,DQ⊥BC,
∴P、D、Q、B四點(diǎn)共圓
∴∠PQD=∠PBD
同理可得∠RQC=∠RDC
∵∠PBD+∠RDC=90°
∴∠PQD+∠RQD=90°+∠CQD=180°
故P、Q、R三點(diǎn)共線
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是圓內(nèi)接四邊形的判定與性質(zhì),其中根據(jù)已知條件判斷出P、D、Q、B四點(diǎn)共圓,進(jìn)而根據(jù)圓周角定理得到∠PQD=∠PBD,并同理得到∠RQC=∠RDC,是證明三點(diǎn)共線的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,△ABC內(nèi)接于圓O,AB是圓O的直徑,AB=2,BC=1,設(shè)AE與平面ABC所成的角為θ,且tanθ=
3
2
,四邊形DCBE為平行四邊形,DC⊥平面ABC.
(1)求三棱錐C-ABE的體積;
(2)證明:平面ACD⊥平面ADE;
(3)在CD上是否存在一點(diǎn)M,使得MO∥平面ADE?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,△ABC內(nèi)接于⊙O,AB=AC,直線MN切⊙O于點(diǎn)C,BE∥MN交AC于點(diǎn)E.若AB=6,BC=4,求AE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC內(nèi)接于圓柱的底面圓O,AB是圓O的直徑,AB=2,BC=1,DC、EB是兩條母線,且 tan∠EAB=
3
2

(1)求三棱錐C-ABE的體積;
(2)證明:平面ACD⊥平面ADE;
(3)在CD上是否存在一點(diǎn)M,使得MO∥平面ADE,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•沈陽(yáng)二模)選修4-1:幾何證明選講
如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,PA是過(guò)點(diǎn)A的直線,且∠PAC=∠ABC.
(1)求證:PA是⊙O的切線;
(2)如果弦CD交AB于點(diǎn)E,AC=8,CE:ED=6:5,AE:EB=2:3,求直徑AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖:△ABC內(nèi)接于⊙O,AB=AC,直線MN切⊙O于點(diǎn)C,BE∥MN交AC于點(diǎn)E,若AB=6,BC=4,則AE的長(zhǎng)為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案