年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
b |
x |
a |
e |
ln2 |
22 |
ln3 |
32 |
lnn |
n2 |
2n2-n-1 |
4(n+1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:四川省自貢市2012屆高三第一次診斷性考試數(shù)學(xué)文科試題 題型:022
要研究可導(dǎo)函數(shù)f(
x)=(1+x)n(n∈N*)在某點(diǎn)x0處的瞬時(shí)變化率,有兩種方案可供選擇:①直接求導(dǎo),得到(x),再把橫坐標(biāo)x0代入導(dǎo)函數(shù)(x)的表達(dá)式;②先把f(x)=(1+x)n按二項(xiàng)式展開,逐個(gè)求導(dǎo),再把橫坐標(biāo)x0代入導(dǎo)函數(shù)(x)的表達(dá)式.綜合①、②可得到某些恒等式,利用上述思想方法,可得到恒等式:=
_________(n∈N*).查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)M是滿足下列條件的函數(shù)f(x)構(gòu)成的集合:“①方程f(x)-x=0有實(shí)數(shù)根;②函數(shù)f(x)的導(dǎo)數(shù)f′(x)滿足0<f′(x)<1.”
(1)若函數(shù)f(x)為集合M中的任一元素,試證明方程f(x)-x=0只有一個(gè)實(shí)根;
(2)判斷函數(shù)g(x)=-+3(x>1)是否是集合M中的元素,并說明理由;
(3)“對(duì)于(2)中函數(shù)g(x)定義域內(nèi)的任一區(qū)間[m,n],都存在x0∈[m,n],使得g(n)-g(m)=(n-m)g′(x0)”,請(qǐng)利用函數(shù)y=lnx的圖像說明這一結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆浙江省杭州學(xué)軍中學(xué)高三第一次月考理科數(shù)學(xué) 題型:解答題
(本題滿分15分)
已知,且(為自然對(duì)數(shù)的底數(shù))。
(1)求與的關(guān)系;
(2)若在其定義域內(nèi)為增函數(shù),求的取值范圍;
(3)證明:
(提示:需要時(shí)可利用恒等式:)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com