【題目】取數(shù)游戲:每次游戲中,游戲人按動游泳按鈕,就從如圖:的三個窗口中各彈出一個數(shù)字,其中:最左邊窗口可隨機彈出數(shù)字4或3,中間窗口可隨機彈出3或2,最右邊窗口可隨機彈出2或1.若彈出的三個數(shù)字為“順子”(如:432),則可獲獎10元,若有相鄰兩位數(shù)字相同,則可獲獎8元,其他情況獲獎-2元.甲玩了8次游戲后,乙問甲的獲獎情況,甲說:“23元有余,28元不足,3除不盡.”那么甲在這8次游戲中得到“順子”、“相鄰兩位數(shù)字相同”、“其他情況”的次數(shù)依次為( )

A. 0,4,4 B. 2,2,4 C. 2,3,3 D. 1,3,4

【答案】D

【解析】填好的三位數(shù)可能是: .10元的有兩種情況;獲8元的有四種情況;獲元的有兩種情況.甲獲獎的可能有元.但獎金均為偶數(shù).所以只能有24,26元兩種可能,又不能被3整除,最后確定獎金為26,可代答案檢驗1,3,4符合要求.

故選:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】近年來,共享單車已經(jīng)悄然進入了廣大市民的日常生活,并慢慢改變了人們的出行方式.為了更好地服務民眾,某共享單車公司在其官方中設置了用戶評價反饋系統(tǒng),以了解用戶對車輛狀況和優(yōu)惠活動的評價.現(xiàn)從評價系統(tǒng)中選出條較為詳細的評價信息進行統(tǒng)計,車輛狀況的優(yōu)惠活動評價的列聯(lián)表如下:

1)能否在犯錯誤的概率不超過的前提下認為優(yōu)惠活動好評與車輛狀況好評之間有關系?

2)為了回饋用戶,公司通過向用戶隨機派送騎行券.用戶可以將騎行券用于騎行付費,也可以通過轉(zhuǎn)贈給好友.某用戶共獲得了5張騎行券,其中只有2張是一元券.現(xiàn)該用戶從這5張騎行券中隨機選取2張轉(zhuǎn)贈給好友,求選取的張中至少有1張是一元券的概率.

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖半圓的直徑為4,為直徑延長線上一點,且,為半圓周上任一點,以為邊作等邊、、按順時針方向排列)

(1)若等邊邊長為,,試寫出關于的函數(shù)關系;

(2)問為多少時,四邊形的面積最大?這個最大面積為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,∠BCD=135°,側(cè)面PAB底面ABCDBAP=90°,AB=AC=PA=2,E、F分別為BCAD的中點,點M在線段PD上.

(1)求證:EF⊥平面PAC

(2)如果直線ME與平面PBC所成的角和直線ME與平

ABCD所成的角相等,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象上的一個最低點為,周期為.

1)求的解析式;

2)將的圖象上的所有點的橫坐標伸長到原來的2倍(縱坐標不變),然后再將所得的圖象沿軸向右平移個單位,得到函數(shù)的圖象,寫出函數(shù)的解析式;

3)當時,求函數(shù)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四棱錐中,交于點,且

。

(1)若中點,求證:。

(2)當三棱錐的體積最大時,求三棱錐的體積,并證明:。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱臺中,底面是菱形,,平面

1)若點的中點,求證://平面;

2)棱BC上是否存在一點E,使得二面角的余弦值為?若存在,求線段CE的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若對于任意, ,恒有成立,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】根據(jù)國家環(huán)保部最新修訂的《環(huán)境空氣質(zhì)量標準》規(guī)定:居民區(qū)PM2.5的年平均濃度不得超過35微克/立方米,PM2.524小時平均濃度不得超過75微克/立方米。某城市環(huán)保部分隨機抽取的一居民區(qū)過去20PM2.524小時平均濃度的監(jiān)測數(shù)據(jù),數(shù)據(jù)統(tǒng)計如下:

組別

PM2.5平均濃度

頻數(shù)

頻率

第一組

(0,25]

3

0.15

第二組

(25,50]

12

0.6

第三組

(50,75]

3

0.15

第四組

(75,100]

2

0.1

(Ⅰ)從樣本中PM2.5的24小時平均濃度超過50微克/立方米的5天中,隨機抽取2天,求恰好有一天PM2.5的24小時平均濃度超過75微克/立方米的概率;

(II)求樣本平均數(shù),并根據(jù)樣本估計總計的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境是否需要改進?并說明理由.

查看答案和解析>>

同步練習冊答案