已知AB是拋物線y2=2Px的任意一條焦點(diǎn)弦,且A(x1,y1),B(x2,y2).
(1)求證y1y2=-p2,x1x2=;
(2)若弦AB被焦點(diǎn)分成長為m,n的兩部分,求證:
【答案】分析:(1)根據(jù)拋物線方程可得焦點(diǎn)坐標(biāo),根據(jù)點(diǎn)斜式設(shè)出焦點(diǎn)弦的方程,與拋物線方程聯(lián)立消去x,根據(jù)韋達(dá)定理可求得y1y2同理可求得x1x2原式得證.
(2)假設(shè)直線斜率存在,則可設(shè)出直線方程與拋物線方程聯(lián)立消去y可求得x1+x2,再根據(jù)拋物線的定義可求得m+n和mn,進(jìn)而可求得+==.再看當(dāng)斜率不存在時,也符合.綜合可推斷
解答:證明(1):因?yàn)閽佄锞y2=2px的焦點(diǎn)為(,0)所以過焦點(diǎn)的弦為y=k(x-),即x=+
與y2=2px聯(lián)立有:
y2--p2=0
所以y1y2=-p2
同理可得x1x2=
原式得證.
(2):①設(shè)AB:y=k(x-),直線方程與拋物線方程聯(lián)立消去y得
得k2x2-(k2p+2p)x+=0.
∴x1+x2=
又由拋物線定義可得
m+n=x1+x2+p==,
m•n=(x1+)(x2+)=,
+==
②若k不存在,則AB方程為x=-,顯然符合本題.
綜合①②有
點(diǎn)評:本題主要考查了拋物線的簡單性質(zhì)及拋物線與直線的關(guān)系.當(dāng)遇到拋物線焦點(diǎn)弦問題時,常根據(jù)焦點(diǎn)設(shè)出直線方程與拋物線方程聯(lián)立,把韋達(dá)定理和拋物線定義相結(jié)合解決問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知AB是拋物線y2=ax(a>0)的焦點(diǎn)弦,且A(x1,y1),B(x2,y2),點(diǎn)F是拋物線的焦點(diǎn),則有x1x2=
a2
16
a2
16
,y1y2=
-
a2
4
-
a2
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知AB是拋物線y2=ax(a>0)的焦點(diǎn)弦,且A(x1,y1),B(x2,y2),點(diǎn)F是拋物線的焦點(diǎn),則|AB|=
a
sin2θ
a
sin2θ
(θ為直線AB的傾斜角).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知AB是拋物線y2=ax(a>0)的焦點(diǎn)弦,且A(x1,y1),B(x2,y2),點(diǎn)F是拋物線的焦點(diǎn),則有S△AOB=
a2
8sinθ
a2
8sinθ
(θ為直線AB的傾斜角).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知AB是拋物線y2=ax(a>0)焦點(diǎn)弦,且A(x1,y1),B(x2,y2),點(diǎn)F是拋物線的焦點(diǎn),則有
1
|AF|
+
1
|BF|
=
4
a
4
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知AB是拋物線y2=2Px的任意一條焦點(diǎn)弦,且A(x1,y1),B(x2,y2).
(1)求證y1y2=-p2,x1x2=
p2
4
;
(2)若弦AB被焦點(diǎn)分成長為m,n的兩部分,求證:
1
m
+
1
n
=
2
p

查看答案和解析>>

同步練習(xí)冊答案