【題目】已知函數(shù),曲線在點(diǎn)處的切線方程為
(1) 求的值;
(2) 證明: .
【答案】(1);(2)見解析
【解析】分析:第一問結(jié)合導(dǎo)數(shù)的幾何意義以及切點(diǎn)在切線上也在函數(shù)圖像上,從而建立關(guān)于的等量關(guān)系式,從而求得結(jié)果;第二問可以有兩種方法,一是將不等式轉(zhuǎn)化,構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的最值,從而求得結(jié)果,二是利用中間量來完成,這樣利用不等式的傳遞性來完成,再者這種方法可以簡(jiǎn)化運(yùn)算.
詳解:(1)解:,由題意有,解得
(2)證明:(方法一)由(1)知,.設(shè)
則只需證明
,設(shè)
則, 在上單調(diào)遞增
,
,使得
且當(dāng)時(shí),,當(dāng)時(shí),
當(dāng)時(shí),,單調(diào)遞減
當(dāng)時(shí),,單調(diào)遞增
,由,得,
,
設(shè),,
當(dāng)時(shí),,在單調(diào)遞減,
,因此
(方法二)先證當(dāng)時(shí), ,即證
設(shè),則,且
,在單調(diào)遞增,
在單調(diào)遞增,則當(dāng)時(shí),
(也可直接分析 顯然成立)
再證
設(shè),則,令,得
且當(dāng)時(shí),,單調(diào)遞減;
當(dāng)時(shí),,單調(diào)遞增.
,即
又,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),函數(shù).
⑴若的定義域?yàn)?/span>,求實(shí)數(shù)的取值范圍;
⑵當(dāng)時(shí),求函數(shù)的最小值;
⑶是否存在非負(fù)實(shí)數(shù)、,使得函數(shù)的定義域?yàn)?/span>,值域?yàn)?/span>,若存在,求出、的值;若不存在,則說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某群體的人均通勤時(shí)間,是指單日內(nèi)該群體中成員從居住地到工作地的平均用時(shí).某地上班族中的成員僅以自駕或公交方式通勤.分析顯示:當(dāng)中()的成員自駕時(shí),自駕群體的人均通勤時(shí)間為(單位:分鐘),而公交群體的人均通勤時(shí)間不受影響,恒為分鐘,試根據(jù)上述分析結(jié)果回答下列問題:
(1)當(dāng)在什么范圍內(nèi)時(shí),公交群體的人均通勤時(shí)間少于自駕群體的人均通勤時(shí)間?
(2)求該地上班族的人均通勤時(shí)間的表達(dá)式;討論的單調(diào)性,并說明其實(shí)際意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為,且,圓與軸交于點(diǎn),,為橢圓上的動(dòng)點(diǎn),,面積最大值為.
(1)求圓與橢圓的方程;
(2)圓的切線交橢圓于點(diǎn),,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形中,是的中點(diǎn),點(diǎn)在線段上,且.若將, 分別沿折起,使兩點(diǎn)重合于點(diǎn),如圖2.
(1)求證: 平面;
(2)求直線與平面所成角的正弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的焦點(diǎn)為,過點(diǎn)的動(dòng)直線交拋物線于不同兩點(diǎn),線段中點(diǎn)為,射線與拋物線交于點(diǎn).
(1)求點(diǎn)的軌跡方程;
(2)求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)有,兩個(gè)分廠生產(chǎn)某種產(chǎn)品,規(guī)定該產(chǎn)品的某項(xiàng)質(zhì)量指標(biāo)值不低于130的為優(yōu)質(zhì)品.分別從,兩廠中各隨機(jī)抽取100件產(chǎn)品統(tǒng)計(jì)其質(zhì)量指標(biāo)值,得到如圖頻率分布直方圖:
(1)根據(jù)頻率分布直方圖,分別求出分廠的質(zhì)量指標(biāo)值的眾數(shù)和中位數(shù)的估計(jì)值;
(2)填寫列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為這兩個(gè)分廠的產(chǎn)品質(zhì)量有差異?
優(yōu)質(zhì)品 | 非優(yōu)質(zhì)品 | 合計(jì) | |
合計(jì) |
(3)(i)從分廠所抽取的100件產(chǎn)品中,利用分層抽樣的方法抽取10件產(chǎn)品,再?gòu)倪@10件產(chǎn)品中隨機(jī)抽取2件,已知抽到一件產(chǎn)品是優(yōu)質(zhì)品的條件下,求抽取的兩件產(chǎn)品都是優(yōu)質(zhì)品的概率;
(ii)將頻率視為概率,從分廠中隨機(jī)抽取10件該產(chǎn)品,記抽到優(yōu)質(zhì)品的件數(shù)為,求的數(shù)學(xué)期望.
附:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某賽季甲、乙兩名籃球運(yùn)動(dòng)員各13場(chǎng)比賽得分情況用莖葉圖表示如圖:
根據(jù)上圖,對(duì)這兩名運(yùn)動(dòng)員地成績(jī)進(jìn)行比較,下列四個(gè)結(jié)論中,不正確的是
A. 甲運(yùn)動(dòng)員得分的極差大于乙運(yùn)動(dòng)員得分的極差
B. 甲運(yùn)動(dòng)員得分的中位數(shù)大于乙運(yùn)動(dòng)員得分的中位數(shù)
C. 甲運(yùn)動(dòng)員的得分平均值大于乙運(yùn)動(dòng)員的得分平均值
D. 甲運(yùn)動(dòng)員的成績(jī)比乙運(yùn)動(dòng)員的成績(jī)穩(wěn)定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)P是平行四邊形ABCD所在平面外一點(diǎn),M、N分別是AB、PC的中點(diǎn).
(1)求證:MN∥平面PAD;
(2)在PB上確定一個(gè)點(diǎn)Q,使平面MNQ∥平面PAD.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com