“點(diǎn)M在曲線y2=4x上”是“點(diǎn)M的坐標(biāo)滿足方程y=-2
x
”的( 。
分析:直接利用充要條件的判定方法,判斷即可.
解答:解:“點(diǎn)M的坐標(biāo)滿足方程y=-2
x
”⇒“點(diǎn)M在曲線y2=4x上”;
“點(diǎn)M在曲線y2=4x上”不一定滿足“點(diǎn)M的坐標(biāo)滿足方程y=-2
x
”.
所以“點(diǎn)M在曲線y2=4x上”是“點(diǎn)M的坐標(biāo)滿足方程y=-2
x
”的必要不充分條件.
故選B.
點(diǎn)評:判斷充要條件的方法是:
①若p⇒q為真命題且q⇒p為假命題,則命題p是命題q的充分不必要條件;
②若p⇒q為假命題且q⇒p為真命題,則命題p是命題q的必要不充分條件;
③若p⇒q為真命題且q⇒p為真命題,則命題p是命題q的充要條件;
④若p⇒q為假命題且q⇒p為假命題,則命題p是命題q的即不充分也不必要條件.
⑤判斷命題p與命題q所表示的范圍,再根據(jù)“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)從圓x2+y2=4上任意一點(diǎn)P作x軸的垂線,垂足為Q,點(diǎn)M在線段PQ上,且
QM
QP
(0<λ<1)

(Ⅰ)求點(diǎn)M的軌跡C的方程;
(Ⅱ)如果點(diǎn)A(-3,4)關(guān)于直線y=x+4的對稱點(diǎn)B在曲線C上,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)M是曲線C上任意一點(diǎn),它到F(4,0)的距離比它到直線x+2=0的距離大2,且P(2m,m)(m>0),A(x1,y1),B(x2,y2)均在曲線C上.
(1)寫出該曲線C的方程及 m的值;
(2)當(dāng)PA與PB的斜率存在且傾斜角互補(bǔ)時,求y1+y2的值及直線AB的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,點(diǎn)N在圓x2+y2=4上運(yùn)動,DN⊥x軸,點(diǎn)M在DN的延長線上,且
DM
DN
(λ>0).
(1)求點(diǎn)M的軌跡方程,并求當(dāng)λ為何值時M的軌跡表示焦點(diǎn)在x軸上的橢圓;
(2)當(dāng)λ=
1
2
時,(1)所得曲線記為C,已知直線l:
x
2
+y=1
,P是l上的動點(diǎn),射線OP(O為坐標(biāo)原點(diǎn))交曲線C于點(diǎn)R,又點(diǎn)Q在OP上且滿足|OQ|•|OP|=|OR|2,求點(diǎn)Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•福建模擬)(1)選修4-2:矩陣與變換
已知向量
1
-1
在矩陣M=
1m
01
變換下得到的向量是
0
-1

(Ⅰ)求m的值;
(Ⅱ)求曲線y2-x+y=0在矩陣M-1對應(yīng)的線性變換作用下得到的曲線方程.
(2)選修4-4:極坐標(biāo)與參數(shù)方程
在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)M的極坐標(biāo)為(4
2
,
π
4
)
,曲線C的參數(shù)方程為
x=1+
2
cosα
y=
2
sinα
(α為參數(shù)).
(Ⅰ)求直線OM的直角坐標(biāo)方程;
(Ⅱ)求點(diǎn)M到曲線C上的點(diǎn)的距離的最小值.
(3)選修4-5:不等式選講
設(shè)實(shí)數(shù)a,b滿足2a+b=9.
(Ⅰ)若|9-b|+|a|<3,求a的取值范圍;
(Ⅱ)若a,b>0,且z=a2b,求z的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•福建模擬)(1)選修4-2:矩陣與變換
已知向量
1
-1
在矩陣M=
1m
01
變換下得到的向量是
0
-1

(Ⅰ)求m的值;
(Ⅱ)求曲線y2-x+y=0在矩陣M-1對應(yīng)的線性變換作用下得到的曲線方程.
(2)選修4-4:極坐標(biāo)與參數(shù)方程
在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)M的極坐標(biāo)為(4
2
π
4
),曲線C的參數(shù)方程為
x=1+
2
cosα
y=
2
sinα
(α為參數(shù)).
(Ⅰ)求直線OM的直角坐標(biāo)方程;
(Ⅱ)求點(diǎn)M到曲線C上的點(diǎn)的距離的最小值.
(3)選修4-5:不等式選講
設(shè)實(shí)數(shù)a、b滿足2a+b=9.
(Ⅰ)若|9-b|+|a|<3,求x的取值范圍;
(Ⅱ)若a,b>0,且z=a2b,求z的最大值.

查看答案和解析>>

同步練習(xí)冊答案