精英家教網(wǎng)從圓x2+y2=4上任意一點(diǎn)P作x軸的垂線,垂足為Q,點(diǎn)M在線段PQ上,且
QM
QP
(0<λ<1)

(Ⅰ)求點(diǎn)M的軌跡C的方程;
(Ⅱ)如果點(diǎn)A(-3,4)關(guān)于直線y=x+4的對(duì)稱點(diǎn)B在曲線C上,求λ的值.
分析:(Ⅰ)設(shè)M(x,y),欲求點(diǎn)M的軌跡C的方程,即尋找x,y之間 的關(guān)系式,利用向量間的關(guān)系求出P點(diǎn)的坐標(biāo)后代入圓的方程即可得;
(Ⅱ)先求出點(diǎn)A(-3,4)關(guān)于直線y=x+4的對(duì)稱點(diǎn)B,后將B的坐標(biāo)代入曲線C的方程即可求得λ.
解答:精英家教網(wǎng)解:(I)設(shè)M(x,y),由題意Q(x,0),P(x,y1)(2分)
QM
QP
(0<λ<1)
得,
(0,y)=λ(0,y1),所以y1=
y
λ
,(4分)
∵P(x,y1)在圓x2+y2=4上,
∴點(diǎn)M的軌跡C的方程為
x2
4
+
y2
4λ2
=1(0<λ<).
(6分)
(II)設(shè)點(diǎn)B(m,n),依題意有
n-4
m+3
=-1
n+4
2
=
m-3
2
+4
,(9分)
解得m=0,n=1,B(0,1)(11分)
由B在曲線C上得,λ=
1
2
(13分)
點(diǎn)評(píng):求曲線的軌跡方程是解析幾何的基本問題,本題考查了利用相關(guān)點(diǎn)法求軌跡方程,相關(guān)點(diǎn)法  根據(jù)相關(guān)點(diǎn)所滿足的方程,通過轉(zhuǎn)換而求動(dòng)點(diǎn)的軌跡方程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

從圓x2+y2=4上任意一點(diǎn)P向x軸作垂線段PD,則線段PD的中點(diǎn)M的軌跡方程為
x2
4
+y2=1
x2
4
+y2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從圓O:x2+y2=4上任意一點(diǎn)P向x軸作垂線,垂足為P′,點(diǎn)M是線段PP′的中點(diǎn),則點(diǎn)M的軌跡方程是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006-2007學(xué)年北京市豐臺(tái)區(qū)高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

從圓x2+y2=4上任意一點(diǎn)P作x軸的垂線,垂足為Q,點(diǎn)M在線段PQ上,且
(Ⅰ)求點(diǎn)M的軌跡C的方程;
(Ⅱ)如果點(diǎn)A(-3,4)關(guān)于直線y=x+4的對(duì)稱點(diǎn)B在曲線C上,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省溫州市十校聯(lián)考高二(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

從圓x2+y2=4上任意一點(diǎn)P向x軸作垂線段PD,則線段PD的中點(diǎn)M的軌跡方程為   

查看答案和解析>>

同步練習(xí)冊(cè)答案