層出不窮的食品安全問題,已經(jīng)極大地影響了公眾對于食品安全的信心,抓緊食品安全刻不容緩.假設(shè)某種品牌的食品在進入市場前必須要對四項指標(biāo)依次進行檢測,如果第一項檢測不合格則不能進入市場,則停止檢測;若第一項檢測合格,后三項中有兩項檢測不合格就不能進入市場,一旦檢測出該品牌的食品不能進入市場或者能進入市場都要停止檢測.已知每一項檢測是相互獨立的,第一項檢測合格的概率為
4
5
,其余三項每一項檢測合格的概率都為
2
3

(Ⅰ)求該品牌的食品不能進入市場的概率;
(Ⅱ)設(shè)停止檢測時所進行的檢測項數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期.
考點:離散型隨機變量的期望與方差,相互獨立事件的概率乘法公式
專題:應(yīng)用題,概率與統(tǒng)計
分析:(Ⅰ)求出該品牌的食品能進入市場的概率,利用對立事件的概率公式,求出該品牌的食品不能進入市場的概率;
(Ⅱ)確定ξ的可能取值為1,2,3,求出相應(yīng)的概率,可得ξ的分布列和數(shù)學(xué)期望.
解答: 解:(Ⅰ)記“該品牌的食品不能進入市場”為事件A,則
.
A
:該品牌的食品能進入市場,
∴P(A)=1-P(
.
A
)=1-
4
5
•[(
2
3
)3+
C
1
3
1
3
•(
2
3
)2]
=1-
16
27
=
11
27

∴該品牌的食品不能進入市場的概率為
11
27
;
(Ⅱ)ξ的可能取值為1,3,4,則
P(ξ=1)=
1
5
,P(ξ=3)=
4
5
•(
1
3
1
3
+
2
3
2
3
)
=
4
9
,P(ξ=4)=1-
1
5
-
4
9
=
16
45

故ξ的分布列為:
ξ 1 2 3
P(ξ)
1
5
4
9
16
45
ξ的數(shù)學(xué)期望Eξ=1×
1
5
+3×
4
9
+4×
16
45
=
133
45
點評:本題以實際問題為載體,考查概率的應(yīng)用,考查相互獨立事件的概率公式,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:“x>3”是“x2>9”的充要條件,命題q:“
a
c2
b
c2
”是“a>b”的充要條件,則( 。
A、“p或q”為真
B、“p且q”為真
C、p真q假
D、p,q均為假

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從只有3張中獎的10張彩票中不放回隨機逐張抽取,設(shè)X表示直至抽到中獎彩票時的次數(shù),則P(X=3)=( 。
A、
3
10
B、
7
10
C、
21
40
D、
7
40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(ωx-
π
3
)(ω>0)的最小正周期為π.
(Ⅰ)求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)將函數(shù)f(x)的圖象向左平移
π
6
個單位,再向上平移1個單位,得到函數(shù)y=g(x)的圖象.求y=g(x)在區(qū)間[0,10π]上零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD的底面ABCD是菱形,∠BCD=60°,PA⊥面ABCD,E是AB的中點,F(xiàn)是PC的中點.
(Ⅰ)求證:面PDE⊥面PAB;
(Ⅱ)求證:BF∥面PDE.
(Ⅲ)當(dāng)PA=AB時,
①求直線PC與平面ABCD所成角的大。
②求二面角P-DE-A所成角的正弦值的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點F(1,0),M點在x軸上,點P在y軸上,且
MN
=2
MP
,PM⊥PF,當(dāng)點P在y軸上運動.
(1)求點N的軌跡C的方程.
(2)設(shè)Q為直線x+1=0上的動點,過Q作C的兩條切線l1,l2,切點分別為A與B
     ①證明:l1⊥l2
     ②證明:直線AB過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正△ABC的邊BC、CA、AB上分別取點P、Q、R,使CQ=2BP,AR=3BP.已知正三角形的邊長是11cm,BP=xcm,△PQR的面積為S
(1)用解析式將S表示成x的函數(shù);
(2)求S的最小值及相應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanθ=2,求f(x)=
sin(θ-
2
)+2sin(π-θ)+4sin(
2
-θ)
cos(π+θ)+2cos(
π
2
+θ)+4cos(θ-π)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個頂點分別為A(2,8),B(-4,0),C(0,6).
(Ⅰ)求直線BC的一般式方程;
(Ⅱ)求AC邊上的中線所在直線的一般式方程.

查看答案和解析>>

同步練習(xí)冊答案