3.已知函數(shù)$f(x)=\left\{\begin{array}{l}x{e^x}(x<0)\\-2x(x≥0)\end{array}\right.$,若函數(shù)g(x)=f(x)-m有3個零點,則m的取值范圍是(-$\frac{1}{e}$,0).

分析 由題意可得f(x)=m有3個不同實數(shù)根.畫出函數(shù)f(x)的圖象,通過圖象即可得到所求m的范圍.

解答 解:函數(shù)g(x)=f(x)-m有3個零點,
即為f(x)=m有3個不同實數(shù)根.
當x≥0時,f(x)=-2x≤0;
當x<0時,f(x)=xex,導數(shù)f′(x)=(1+x)ex,
當-1<x<0時,f′(x)>0,f(x)遞增;
當x<-1時,f′(x)<0,f(x)遞減.
可得f(x)在x<0時由最小值,且為-$\frac{1}{e}$.
畫出f(x)的圖象,可得
當-$\frac{1}{e}$<m<0,函數(shù)f(x)和直線y=m有3個交點,
函數(shù)g(x)=f(x)-m有3個零點.
故答案為:(-$\frac{1}{e}$,0).

點評 不同考查函數(shù)零點個數(shù)問題的解法,注意運用轉(zhuǎn)化思想,考查數(shù)形結合思想方法,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

13.如果p是q的充分不必要條件,r是q的必要不充分條件;那么( 。
A.¬p?¬rB.¬p⇒¬rC.¬p?¬rD.p?r

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.將含有3n個正整數(shù)的集合M分成元素個數(shù)相等且兩兩沒有公共元素的三個集合A、B、C,其中A={a1,a2,…,an},B={b1,b2,…,bn},C={c1,c2,…,cn},若A、B、C中的元素滿足條件:c1<c2<…<cn,ak+bk=ck,k=1,2,…,n,則稱M為“完并集合”.
(1)若M={1,x,3,4,5,6}為“完并集合”,求x的值;
(2)對于“完并集合”M={1,2,3,4,5,6,7,8,9,10,11,12},在所有符合條件的集合C中,求元素乘積最小的集合C.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.若雙曲線上存在點P,使得P到兩個焦點的距離之比為2:1,則稱此雙曲線存在“L點”,下列雙曲線中存在“L點”的是( 。
A.${x^2}-\frac{y^2}{4}=1$B.${x^2}-\frac{y^2}{9}=1$C.${x^2}-\frac{y^2}{15}=1$D.${x^2}-\frac{y^2}{24}=1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=x+$\frac{k}{|x|}$-1(x≠0),k∈R.
(1)當k=3時,試判斷f(x)在(-∞,0)上的單調(diào)性,并用定義證明;
(2)若對任意x∈R,不等式f(2x)>0恒成立,求實數(shù)k的取值范圍;
(3)當k∈R時,試討論f(x)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知O為原點,過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)上的點P作兩條漸近線的平行線,且與兩漸近線的交點分別為A,B,平行四邊形OBPA的面積為2,則此雙曲線的漸近線方程為(  )
A.y=±$\frac{1}{4}$xB.y=±$\frac{1}{3}$xC.y=±$\frac{1}{2}$xD.y=±$\frac{\sqrt{3}}{3}$x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.小芳投擲一枚均勻的骰子,則它投擲得的點數(shù)為奇數(shù)的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{1}{12}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.sin80°cos70°+sin10°sin70°=( 。
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.一個半徑是R的扇形,其周長為4R,則該扇形圓心角的弧度數(shù)為( 。
A.1B.2C.πD.$\frac{2π}{3}$

查看答案和解析>>

同步練習冊答案