【題目】為下述正整數(shù)的個數(shù):的各位數(shù)字之和為,且每位數(shù)字只能取

(1)求,,,的值;

(2)對,試探究的大小關系,并加以證明.

【答案】(1),,;(2),證明詳見解析.

【解析】

1)根據已知條件,依次取,列出符合的正整數(shù),從而得到個數(shù),得到所求結果;(2)由(1)猜想可知:,首先證得當時,,再用數(shù)學歸納法證得,接著用數(shù)學歸納法證明猜想的結論成立.

(1),則 ;

,則 ;

,則 ;

,則,,,

綜上:,,

(2)由(1)猜想:;

,其中

假定,刪去,則當依次取時,分別等于,,

故當時,

先用數(shù)學歸納法證明下式成立:

時,由(1)得:,結論成立;

②假設當時,

時,

時,結論成立;

綜合①②,,

再用數(shù)學歸納法證明下式成立:

①當時,由(1)得:,結論成立;

②假設當時,

時,

時,結論成立;

綜合①②,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知直線,則下列結論正確的是(

A.直線的傾斜角是B.若直線

C.到直線的距離是D.與直線平行的直線方程是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】地球海洋面積遠遠大于陸地面積,隨著社會的發(fā)展,科技的進步,人類發(fā)現(xiàn)海洋不僅擁有巨大的經濟利益,還擁有著深遠的政治利益.聯(lián)合國于第63屆聯(lián)合國大會上將每年的68日確定為“世界海洋日”.201968日,某大學的行政主管部門從該大學隨機抽取100名大學生進行一次海洋知識測試,并按測試成績(單位:分)分組如下:第一組[65,70),第二組[70,75),第二組[75,80),第四組[80,85),第五組[85,90],得到頻率分布直方圖如下圖:

1)求實數(shù)的值;

2)若從第四組、第五組的學生中按組用分層抽樣的方法抽取6名學生組成中國海洋實地考察小隊,出發(fā)前,用簡單隨機抽樣方法從6人中抽取2人作為正、副隊長,列舉出所有的基本事件并求“抽取的2人為不同組”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù))。在極坐標系(與直角坐標系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,圓的極坐標方程為。

1)求直線的普通方程和圓的直角坐標方程;

2)設圓與直線交于兩點,若點的坐標為,求。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,圓的方程為,且圓軸交于兩點,設直線的方程為.

(1)當直線與圓相切時,求直線的方程;

(2)已知直線與圓相交于兩點.(i),求直線的方程;(ii)直線與直線相交于點,直線,直線,直線的斜率分別為,,是否存在常數(shù),使得恒成立?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知是半圓的直徑,,是將半圓圓周四等分的三個分點

(1)從這5個點中任取3個點,求這3個點組成直角三角形的概率;

(2)在半圓內任取一點,求的面積大于的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】李克強總理在2018年政府工作報告指出,要加快建設創(chuàng)新型國家,把握世界新一輪科技革命和產業(yè)變革大勢,深入實施創(chuàng)新驅動發(fā)展戰(zhàn)略,不斷增強經濟創(chuàng)新力和競爭力.某手機生產企業(yè)積極響應政府號召,大力研發(fā)新產品,爭創(chuàng)世界名牌.為了對研發(fā)的一批最新款手機進行合理定價,將該款手機按事先擬定的價格進行試銷,得到一組銷售數(shù)據,如表所示:

單價(千元)

銷量(百件)

已知.

(1)若變量具有線性相關關系,求產品銷量(百件)關于試銷單價(千元)的線性回歸方程;

(2)用(1)中所求的線性回歸方程得到與對應的產品銷量的估計值.當銷售數(shù)據對應的殘差的絕對值時,則將銷售數(shù)據稱為一個“好數(shù)據”.現(xiàn)從個銷售數(shù)據中任取個子,求“好數(shù)據”個數(shù)的分布列和數(shù)學期望.

(參考公式:線性回歸方程中的估計值分別為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四棱錐中,底面為矩形,,的中點.

(1)證明:;

(2),三棱錐的體積,求二面角DAEC的大小

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面平面ABC,P、P在平面ABC的同側,二面角的平面角為鈍角,Q到平面ABC的距離為是邊長為2的正三角形,,.

1)求證:面平面PAB;

2)求二面角的平面角的余弦值.

查看答案和解析>>

同步練習冊答案