已知直線l過(guò)點(diǎn)(-1,0),l與圓C:(x-1)2+y2=3相交于A、B兩點(diǎn),則弦長(zhǎng)|AB|≥2的概率為
 
考點(diǎn):幾何概型
專(zhuān)題:概率與統(tǒng)計(jì)
分析:先找出使弦長(zhǎng)|AB|=2時(shí)的情況,再求直線與圓相切時(shí)的情形,根據(jù)幾何概型的概率公式求解即可.
解答: 解:圓點(diǎn)是(1,0)半徑是
3
,
可知(-1,0)在圓外 要使得弦長(zhǎng)|AB|≥2 由半徑是
3

設(shè)過(guò)圓點(diǎn)垂直于AB的直線 垂足為C 可得出圓點(diǎn)到AB的距離是
2
,
再由(-1,0)(1,0)和C點(diǎn)構(gòu)成的直角三角形中 可知過(guò)(-1,0)的直線與x軸成45°
當(dāng)直線與圓相切時(shí),過(guò)(-1,0)的直線與x軸成60°
所以概率為:
45°+45°
60°+60°
=
3
4

故答案為:
3
4
點(diǎn)評(píng):本題主要考查集合概型,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在底面是正方形的四棱錐PABCD中,PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn).
(1)證明:PA∥平面BDE;
(2)求二面角B-DE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的焦點(diǎn)F1(-2
2
,0)和F2(2
2
,0),長(zhǎng)軸長(zhǎng)6.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)直線y=x+2交橢圓C于A,B兩點(diǎn),求線段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
4
-
y2
b2
=1(b∈N*)的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,O為坐標(biāo)原點(diǎn),點(diǎn)P在雙曲線上,且|OP|<5,若|PF1|、|F1F2|、|PF1|成等比數(shù)列,則b2等于( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿(mǎn)足方程x2+y2=4,求z=2x+y的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y滿(mǎn)足約束條件
x+y≥a
x-y≤-1
且,z=x+ay的最小值為17,則a=( 。
A、-7B、5
C、-7或5D、-5或7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若雙曲線
x2
a2
-
y2
3
=1(a>0)的離心率為2,則雙曲線的漸近線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C中心在坐標(biāo)原點(diǎn),焦點(diǎn)坐標(biāo)為(2,0),短軸長(zhǎng)為4
3

(1)求橢圓C的標(biāo)準(zhǔn)方程及離心率,并寫(xiě)出橢圓的準(zhǔn)線方程;
(2)設(shè)P是橢圓C上一點(diǎn),且點(diǎn)P與橢圓C的兩個(gè)焦點(diǎn)F1,F(xiàn)2構(gòu)成一個(gè)直角三角形,且PF1>PF2,求
PF1
PF2
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將直y=3x繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°,則所得到的直線方程為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案